Quarterly Report

Calendar Year 2023 – First Quarter, January 1 – March 31, 2023

Prepared by:

Carlsbad Environmental Monitoring & Research Center under a financial assistance grant from U.S. Department of Energy Carlsbad Field Office (CBFO) Award No. DE-EM0005195

Submitted to:

U.S. Department of Energy Carlsbad Field Office

April 2023

Field Programs/Radiation Safety Group

WIPP Underground Effluent Monitoring (Station A and Station B)

From January 1st to March 31st, a total of 142 filters were collected from the primary skid at Station A, of which 118 were sample filters, 12 were trip blanks and 12 were filter blanks. 132 filters were also collected from the backup skid at Station A (108 sample, 12 trip blanks and 12 blanks). 112 filters have been collected from the primary skid at Station B, (88 sample filters, 12 trip blanks and 12 filter blanks). 112 filters were collected from Station B backup (88 sample, 12 trip blanks and 12 filter blanks), during the same time period.

All fixed air sampler (FAS) filters from the primary and backup skids at Station A and Station B have been processed (gravimetrics, sample flow volume, and mass concentration have been calculated in the FP data package) and transferred to the radiochemistry (RC) and environmental chemistry (EC) groups, except for the last week of March, which is in process.

Ambient Air Sampling

From January 1st to March 31st 18 ambient air samples were collected from the six perimeter and regional continuous sampling stations (On-Site, Near Field, Cactus Flats, WIPP East, Carlsbad, and Loving) using a high-volume sampler. Twelve of the 18 filter samples have been processed (gravimetrics, total air flow values, and any irregularities note) by FP and transferred to RC. The remaining 6 are in the desiccator.

6 Whatman-41 filters and 3 trip blank filters were collected from January 1st to March 31st from the 2 sampling sites (Near Field, Cactus Flats) using a high-volume sampler. All filter samples have been processed (total air flow values and any irregularities note) by FP and transferred to EC.

Soil sampling

Four (3 samples and 1 duplicate) soil samples were collected during the month of March, these samples were collected with WIPP personnel.

Surface water Monitoring

Surface water sampling will begin in the 2nd or 3rd quarter.

Drinking water Monitoring

Drinking water samples are scheduled to be collected in June or July.

Sediment Monitoring

Sediment sampling will begin in the 2nd or 3rd quarter.

Nuclear Materials Management and Safeguards

From January 1st to March 31st radiation safety (RS) has collected and bulked radioactive waste from NMSU, LANL and the LATA (WIPP Labs) groups working in this facility.

RS has performed monthly surveys of all Rad labs in the building, which include smears and dose rate measurements. All fume hoods are face velocity checked quarterly; the date of the last inspection was 03/22/2023. The XLB, where the smears are counted was calibrated on 5/25/22. Several survey instruments have been sent off to Ludlum for calibration. A Rad waste pickup is scheduled for the first week of April 2023.

FP personnel have been working with the RC group to locate archived samples for reanalysis, along with performing work in the laboratory and helping with the gamma spectroscopy.

Radiochemistry Group

WIPP Underground Effluent Monitoring (Station A and Station B)

Gross alpha and beta activities on individual filters collected from station A, taken immediately before, and Station B, taken after the HEPA (high-efficiency particulate air) filtration, were counted using a low-background gas proportional counter (Protean Instruments) for 1200 minutes (20 hours). The analysis of all filters from Station A and Station B has been completed through the third week of March 2023. The analysis of the fourth week of March is currently underway and will be completed by the end of this week. The complete results for the months of January and February have been submitted to CBFO. The results for the month of March will be submitted to CBFO by the end of this week.

Vegetation Analysis

The analysis of vegetation samples from 2021 for actinides (U, Pu, and ²⁴¹Am isotopes) has been completed. The analysis of vegetation samples from 2021 for gamma-ray emitters (⁶⁰Co, ¹³⁷Cs, and ⁴⁰K) will be completed this week. The analysis of vegetation samples for ⁹⁰Sr is included below with ⁹⁰Sr analysis for the other environmental media.

Other Environmental Media

Analysis of ⁹⁰Sr in environmental media is currently underway for calendar years 2020 and 2021. The total number of samples is broken down as follows:

Medium	2020 Samples	2021 Samples
Drinking Water	8	8
Surface Water	9	12
Sediment	4	4
Soil	18	18
Hi-Vol	88	78
FAS Station A	44	46
FAS Station B	12	12
Vegetation	0	6
Total	183	184

As soon as the backlog of samples from calendar years 2020 and 2021 is cleared, analysis of samples from calendar year 2022 will begin.

Environmental Chemistry Group

From January 1 through March 31, 2023, the Environmental Chemistry (EC) Group worked on the following:

Analysis Type	Status
2023 detection limits	Complete – all up to date
2022 FAS Station A, metals	Complete through May
2022 FAS Station A, anions	Complete
2022 FAS Station B, anions	Complete
2022 FAS Station B, cations	Complete
2022 Whatman (Hi-Vol), anions	Complete
2017 FAS Station B, metals	Complete
Proficiency test (anions, cations, mercury)	Complete (passed)

The goals of the EC Group for the 2^{nd} quarter include the following:

- 1. Last proficiency test for 2023: metals
- 2. FAS Backlog:
 - a. 2016 FAS Station A, metals
 - b. 2015 FAS Station A, metals
- 3. Whatman backlog:
 - a. 2020 Whatman, metals
 - b. 2021 Whatman, metals

The following Tables and Figures represent characteristic results.

Samp	ole Type: FAS	5, Station A					
	Year: 202	2	•.				
Analysis Per	formed: Met	als in weekly c	omposites	M ·	C '1'	T I •	¥1 •
Week	Aluminum	Cadmium	Lead	Magnesium	Silica	I norium	uranium
01/01/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
01/01/22	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
01/15/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
01/22/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
02/01/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
02/08/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
02/15/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
02/22/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
03/01/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
03/08/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
03/15/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
03/22/22	1.087E+03	6.314E-01	2.874E+00	1.909E+04	1.438E+04	1.394E-01	9.830E-02
04/01/22	8.750E+02	6.864E-01	6.958E+00	1.032E+04	2.573E+03	1.603E-01	7.171E-02
04/08/22	9.194E+02	4.033E-01	3.400E+00	2.245E+04	1.444E+04	1.262E-01	7.280E-02
04/15/22	5.459E+02	5.250E-01	3.517E+00	9.622E+03	1.677E+03	7.960E-02	3.798E-02
04/22/22	5.466E+02	4.887E-01	4.573E+00	8.790E+03	1.720E+03	8.589E-02	4.267E-02
05/01/22							
05/08/22							
05/15/22							
05/22/22							
06/01/22							
06/08/22							
06/15/22							
06/13/22							
00/22/22							
07/01/22							
07/08/22							
07/15/22							
07/22/22							
08/01/22							
08/08/22							
08/15/22							
08/22/22							
09/01/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
09/08/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
09/15/22	N/A	N/A	N/A	N/A	N/A	N/A	N/A
09/22/22	4.349E+02	4.175E-01	7.021E+00	1.058E+04	1.296E+03	4.971E-02	3.704E-02
10/01/22							
10/08/22							
10/15/22							
10/22/22							
11/01/22							
11/08/22							
11/15/22							
11/22/22						<u> </u>	
12/01/22							
12/15/22							
12/22/22							

Sample Type:FAS, Station AYear:2022Analysis Performed:Anions in weekly composites

	Chloride	Nitrate	Phosphate	Sulfate
Week	ng/m ³	ng/m ³	ng/m ³	ng/m ³
01/01/22	N/A	N/A	N/A	N/A
01/08/22	N/A	N/A	N/A	N/A
01/15/22	N/A	N/A	N/A	N/A
01/22/22	N/A	N/A	N/A	N/A
02/01/22	N/A	N/A	N/A	N/A
02/08/22	N/A	N/A	N/A	N/A
02/15/22	N/A	N/A	N/A	N/A
02/22/22	N/A	N/A	N/A	N/A
03/01/22	N/A	N/A	N/A	N/A
03/08/22	N/A	N/A	N/A	N/A
03/15/22	N/A	N/A	N/A	N/A
03/22/22	1.82E+06	<mdl< th=""><th><mdl< th=""><th>7.52E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>7.52E+04</th></mdl<>	7.52E+04
04/01/22	1.19E+05	<mdl< th=""><th><mdl< th=""><th>1.85E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.85E+04</th></mdl<>	1.85E+04
04/08/22	3.77E+05	<mdl< th=""><th><mdl< th=""><th>6.45E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>6.45E+04</th></mdl<>	6.45E+04
04/15/22	4.03E+05	<mdl< th=""><th><mdl< th=""><th>2.69E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.69E+04</th></mdl<>	2.69E+04
04/22/22	2.05E+05	<mdl< th=""><th><mdl< th=""><th>1.85E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.85E+04</th></mdl<>	1.85E+04
05/01/22	1.85E+05	6.08E+02	<mdl< th=""><th>2.18E+04</th></mdl<>	2.18E+04
05/08/22	2.43E+05	7.04E+02	<mdl< th=""><th>4.07E+04</th></mdl<>	4.07E+04
05/15/22	3.18E+05	6.11E+02	<mdl< th=""><th>3.42E+04</th></mdl<>	3.42E+04
05/22/22	1.56E+05	<mdl< th=""><th>4.39E+03</th><th>1.80E+04</th></mdl<>	4.39E+03	1.80E+04
06/01/22	1.68E+05	6.83E+02	<mdl< th=""><th>9.29E+03</th></mdl<>	9.29E+03
06/08/22	2.82E+05	7.07E+02	<mdl< th=""><th>2.45E+04</th></mdl<>	2.45E+04
06/15/22	2.89E+05	7.42E+02	<mdl< th=""><th>2.22E+04</th></mdl<>	2.22E+04
06/22/22	1.89E+05	6.15E+02	<mdl< th=""><th>2.38E+04</th></mdl<>	2.38E+04
07/01/22	1.52E+05	<mdl< th=""><th><mdl< th=""><th>3.72E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>3.72E+04</th></mdl<>	3.72E+04
07/08/22	1.75E+05	<mdl< th=""><th><mdl< th=""><th>3.90E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>3.90E+04</th></mdl<>	3.90E+04
07/15/22	N/A	N/A	N/A	N/A
07/22/22	2.21E+05	7.10E+02	<mdl< th=""><th>2.15E+04</th></mdl<>	2.15E+04
08/01/22	1.03E+06	<mdl< th=""><th><mdl< th=""><th>1.69E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.69E+04</th></mdl<>	1.69E+04
08/08/22	3.93E+05	6.37E+02	<mdl< th=""><th>1.74E+04</th></mdl<>	1.74E+04
08/15/22	1.63E+05	<mdl< th=""><th><mdl< th=""><th>1.44E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.44E+04</th></mdl<>	1.44E+04
08/22/22	N/A	N/A	N/A	N/A
09/01/22	N/A	N/A	N/A	N/A
09/08/22	N/A	N/A	N/A	N/A
09/15/22	N/A	N/A	N/A	N/A
09/22/22	2.01E+05	<mdl< th=""><th><mdl< th=""><th>1.5/E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.5/E+04</th></mdl<>	1.5/E+04
10/01/22	2.71E+05	<mdl< th=""><th><mdl< th=""><th>1.23E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.23E+04</th></mdl<>	1.23E+04
10/08/22	2.75E+05	<mdl< th=""><th><mdl< th=""><th>1.31E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.31E+04</th></mdl<>	1.31E+04
10/15/22	2.05E+05	<mdl< th=""><th><mdl< th=""><th>1.91E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.91E+04</th></mdl<>	1.91E+04
10/22/22	1.25E+05	<mdl< th=""><th><mdl< th=""><th>2.31E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.31E+04</th></mdl<>	2.31E+04
11/01/22	2.35E+05	2.08E+02	<mdl< th=""><th>6.27E+04</th></mdl<>	6.27E+04
11/08/22	1.96E+05	2.38E+02	<mdl< th=""><th>3.43E+04</th></mdl<>	3.43E+04
11/15/22	2.40E+05	2.95E+02	<mdl< th=""><th>5.06E+04</th></mdl<>	5.06E+04
11/22/22	1.77E+05	<mdl< th=""><th><mdl< th=""><th>2.06E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.06E+04</th></mdl<>	2.06E+04
12/01/22	1.88E+05	<mdl< th=""><th><mdl< th=""><th>2.75E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.75E+04</th></mdl<>	2.75E+04
12/08/22	2.24E+05	<mdl< th=""><th><mdl< th=""><th>2.30E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.30E+04</th></mdl<>	2.30E+04
12/15/22	2.41E+05	2.63E+02	<mdl< th=""><th>5.96E+04</th></mdl<>	5.96E+04
12/22/22	3.16E+05	1.89E+02	<mdl< th=""><th>2.2/E+04</th></mdl<>	2.2/E+04

Sample Type:FAS, Station BYear:2022Analysis Performed:Anions in monthly composites

Sample Date	Sample Chloride Date ng/m ³		Phosphate ng/m ³	Sulfate ng/m ³
January	6.14E+02	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
February	6.12E+02	<mdl< th=""><th><mdl< th=""><th>2.12E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.12E+02</th></mdl<>	2.12E+02
March	7.43E+02	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
April	7.33E+02	<mdl< th=""><th><mdl< th=""><th>2.54E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.54E+02</th></mdl<>	2.54E+02
May	7.73E+02	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
June	9.11E+02	<mdl< th=""><th><mdl< th=""><th>3.25E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>3.25E+02</th></mdl<>	3.25E+02
July	1.14E+03	<mdl< th=""><th><mdl< th=""><th>2.32E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.32E+02</th></mdl<>	2.32E+02
August	N/A	N/A	N/A	N/A
September	7.27E+02	<mdl< th=""><th><mdl< th=""><th>2.51E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.51E+02</th></mdl<>	2.51E+02
October	7.48E+02	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
November	8.11E+02	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
December	6.87E+02	<mdl< th=""><th><mdl< th=""><th>2.51E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.51E+02</th></mdl<>	2.51E+02

Sample Type:	FAS, Station B
Year:	2022

Analysis Performed: Cations in monthly composites

Sample Date	Sodium ng/m ³	Ammonium ng/m ³	Magnesium ng/m ³	Potassium ng/m ³	Calcium ng/m ³
January	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
February	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
March	<mdl< th=""><th><mdl< th=""><th>3.25E+01</th><th><mdl< th=""><th>1.47E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>3.25E+01</th><th><mdl< th=""><th>1.47E+02</th></mdl<></th></mdl<>	3.25E+01	<mdl< th=""><th>1.47E+02</th></mdl<>	1.47E+02
April	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>5.30E+01</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>5.30E+01</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>5.30E+01</th></mdl<></th></mdl<>	<mdl< th=""><th>5.30E+01</th></mdl<>	5.30E+01
May	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.42E+02</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.42E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1.42E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.42E+02</th></mdl<>	1.42E+02
June	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.18E+02</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.18E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1.18E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.18E+02</th></mdl<>	1.18E+02
July	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
August	N/A	N/A	N/A	N/A	N/A
September	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>3.94E+01</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>3.94E+01</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>3.94E+01</th></mdl<></th></mdl<>	<mdl< th=""><th>3.94E+01</th></mdl<>	3.94E+01
October	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.16E+01</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.16E+01</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2.16E+01</th></mdl<></th></mdl<>	<mdl< th=""><th>2.16E+01</th></mdl<>	2.16E+01
November	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
December	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>

lysis Performed	l: Anions					
Start Date	Chloride μg/m³	Nitrate μg/m³	Phosphate μg/m ³	Sulfate µg/m ³		
2/22/22	2.37E-01	2.39E+00	1.32E-02	1.52E+00		
3/2/22	2.43E-01	1.66E+00	6.80E-03	1.46E+00		
3/16/22	3.10E-01	1.85E+00	1.80E-02	1.28E+00		
3/30/22	4.83E-01	1.85E+00	1.80E-02	1.28E+00		
4/13/22	3.93E-01	2.15E+00	1.40E-02	2.23E+00		
4/29/22	2.33E-01	1.66E+00	<mdl< td=""><td>1.89E+00</td></mdl<>	1.89E+00		
5/18/22	3.39E-01	1.97E+00	1.37E-02	1.79E+00		
6/3/22	1.35E-01	1.81E+00	<mdl< td=""><td>2.14E+00</td></mdl<>	2.14E+00		
6/15/22	3.98E-01	2.26E+00	<mdl< td=""><td>1.52E+00</td></mdl<>	1.52E+00		
6/29/22	9.87E-02	1.73E+00	8.52E-03	1.46E+00		
7/22/22	2.39E-01	1.88E+00	<mdl< td=""><td>1.89E+00</td></mdl<>	1.89E+00		
8/17/22	2.30E-01	1.76E+00	8.05E-03	1.56E+00		
10/3/22	3.09E-01	2.37E+00	7.45E-03	1.50E+00		
11/04/22	2.48E-01	1.92E+00	3.89E-03	1.29E+00		
12/09/22	2.30E-01	1.80E+00	4.15E-03	1.80E+00		

Sample Type: Near Field, ambient air Year: 2022

Ana

Sample Type:Cactus Flats, ambient airYear:2022Analysis Performed:Anions

Start Date	Chloride μg/m ³	Nitrate µg/m ³	Phosphate µg/m ³	Sulfate µg/m ³
2/22/22	2.52E-01	2.55E+00	7.60E-03	1.26E+00
3/2/22	5.09E-02	7.30E-01	2.44E-03	3.27E-01
3/16/22	2.22E-01	1.14E+00	<mdl< th=""><th>1.09E+00</th></mdl<>	1.09E+00
3/30/22	1.65E-01	1.21E+00	1.17E-02	9.35E-01
4/13/22	1.57E-01	1.55E+00	5.86E-03	8.77E-01
4/29/22	2.43E-01	1.51E+00	9.88E-03	1.74E+00
5/18/22	2.75E-01	1.68E+00	9.61E-03	1.41E+00
6/3/22	1.08E-01	1.32E+00	5.98E-03	1.62E+00
6/15/22	2.63E-01	1.60E+00	5.95E-03	1.20E+00
6/29/22	9.40E-02	1.46E+00	1.19E-02	1.37E+00
7/22/22	1.10E-01	2.08E+00	4.46E-03	1.43E+00
8/17/22	5.08E-02	1.10E+00	7.08E-03	1.26E+00
10/3/22	1.41E-01	2.36E+00	<mdl< th=""><th>1.22E+00</th></mdl<>	1.22E+00
11/04/22	1.42E-01	1.40E+00	2.87E-03	9.84E-01
12/09/22	2.47E-01	1.65E+00	2.46E-03	1.71E+00

Sample Type:Proficiency TestYear:2023Analysis Performed:Hardness

Ver. 1 Page 8 of 9

WS-318 Final Evaluation Report

	A Waters Company Adr Ass Nev 140 CEI Car (575	ienne Chancellor ociate Research / Mexico State Ur 0 University Dr //RC Isbad, NM 88220- 5) 234-5525	hancellor Research Scientist o State University rsity Dr M 88220-3575 525			EPA ID: ERA Customer Number: Report Issued: Study Dates:			Not Reported N215603 02/27/2023 01/09/2023 - 02/23/2023			
TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Z Score	Study Mean	Study Standard Deviation	Analyst Name
WS Hard	Iness (cat# 555, lot# S318-693)											
1035	Calcium	mg/L	73.1	72.1	61.3 - 82.9	Acceptable	ASTM D6919-09 2009	2/2/2023	0.725	71.1	2.71	
1085	Magnesium	mg/L	11.9	11.7	9.94 - 13.5	Acceptable	ASTM D6919-09 2009	2/2/2023	0.359	11.7	0.494	
1155	Sodium	mg/L	23.7	22.2	18.9 - 25.5	Acceptable	ASTM D6919-09 2009	2/2/2023	1.20	22.4	1.08	
1550	Calcium Hardness as CaCO3	mg/L	182.8	180	153 - 207	Acceptable	ASTM D6919-09 2009	2/2/2023	0.767	177	7.15	
1755	Total Hardness as CaCO3	mg/L	231.7	228	194 - 262	Acceptable	ASTM D6919-09 2009	2/2/2023	0.797	226	7.52	

Sample Type:Proficiency TestYear:2023Analysis Performed:Inorganics & Mercury

Ver. 1 Page 8 of 9

ERA

WS-319 Final Evaluation Report

A Waters Company

Adrienne Chancellor Associate Research Scientist New Mexico State University 1400 University Dr CEMRC Carlsbad, NM 88220-3575 (575) 234-5525

EPA ID: ERA Customer Number: Report Issued: Study Dates: Not Reported N215603 03/27/2023 02/06/2023 - 03/23/2023

TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Z Score	Study Mean	Study Standard Deviation	Analyst Name
WS Inorg	VS Inorganics (cat# 591, lot# \$319-698)											
1505	Alkalinity as CaCO3	mg/L		95.2	85.7 - 105	Not Reported				96.4	4.03	
1575	Chloride	mg/L	96.7	91.3	77.6 - 105	Acceptable	EPA 300.0 2.1 1993	2/15/2023	1.97	91.6	2.58	
1610	Conductivity at 25°C	µmhos/cm		895	806 - 985	Not Reported				892	10.5	
1730	Fluoride	mg/L	3.5	3.35	3.02 - 3.68	Acceptable	EPA 300.0 2.1 1993	2/15/2023	0.685	3.37	0.188	
1820	Nitrate + Nitrite as N	mg/L		5.17	4.39 - 5.95	Not Reported				5.11	0.218	
1810	Nitrate as N	mg/L	5.3	5.17	4.65 - 5.69	Acceptable	EPA 300.0 2.1 1993	2/15/2023	0.830	5.08	0.265	
1125	Potassium	mg/L		21.3	18.1 - 24.5	Not Reported				21.2	1.03	
2000	Sulfate	mg/L	156.9	153	130 - 176	Acceptable	EPA 300.0 2.1 1993	2/15/2023	0.599	153	6.29	
1955	Total Dissolved Solids at 180°C	mg/L		634	507 - 761	Not Reported				611	35.2	
WS Merc	WS Mercury (cat# 551, lot# \$319-666)											
1095	Mercury	µg/L	1.4	1.81	1.27 - 2.35	Acceptable	EPA 200.8 5.4 1994	3/10/2023	-1.72	1.80	0.235	

Sample Collection Start Date

FAS, Station A, Lead

FAS, Station B, Lead

FAS, Station B, Chloride

Sample Collection Start Date

FAS, Station B, Calcium

FAS, Station B, Sodium

FAS, Station B, Sulfate

Whatman, Location 107, Chloride

Whatman, Location 107, Nitrate

Whatman, Location 107, Phosphate

Whatman, Location 107, Sulfate

Whatman, Location 108, Chloride

Whatman, Location 108, Nitrate

Whatman, Location 108, Phosphate

Whatman, Location 108, Sulfate

Organic Chemistry Group

The Organic Chemistry (OC) Group is monitoring the air quality at the surface and underground at the WIPP site with respect to volatile organic compounds (VOCs). There was personnel change during the first quarter of 2023 in the OC laboratory that temporarily disrupted the laboratory operations. However, operations have now returned to normal and productivity has been restored, as can be seen from the figure below, showing the number of analysis of surface samples.

Analysis of Surface Samples for GCMS 5977

It should be noted that two of the instruments used for screening and for underground samples are quite old and this leads to many failed runs and loss of productivity, as can be seen in the figure below.

Representative analysis of the target trace compounds is shown below.

Data Path : J:\VOCs_Data_Packages\2023_GCMS_Data\5977\1st_Quarter\02242302\ Data File : 02242316.D Acg On : 25 Feb 2023 02:18 Operator : WY Sample : 12222 Misc : 300#12 ALS Vial : 1 Sample Multiplier: 1 Quant Method : J:\VOCs_Data_Packages\2023_GCMS_Data\5977\Methods\01072301_ppbv_SCAN.M Quant Title : 5977, to15010723_SCAN_ppbv TIC Library : C:\Database\NIST20.L TIC Integration Parameters: WVOC.P Peak Number 6 p-Bromofluorobenzene Concentration Rank 1 R.T. EstConc Area Relative to ISTD R.T. -----24.277 2.51 ppbv 767194 Chlorobenzene-d5 22.574 Hit# of 5 Tentative ID MW MolForm CAS# Qual 1 p-Bromofluorobenzene 174 C6H4BrF 000460-00-4 94 2 p-Bromofluorobenzene 174 C6H4BrF 000460-00-4 94 3 Benzene, 1-bromo-3-fluoro-174 C6H4BrF 001073-06-9 93 4 Benzene, 1-bromo-3-fluoro-174 C6H4BrF 001073-06-9 93 5 Benzene, 1-bromo-2-fluoro-174 C6H4BrF 001072-85-1 93 Abundance m/z 173.80 100.00% Scan 2464 (24.277 min): 02242316.D\data.ms (-2454 94.9 178.8 5000 74.9 49.9 24.00 24.50 116.7 142.8 97.51% m/z 175.80 80 100 120 140 160 180 20 40 60 m/z--> Abundance #48817: p-Bromofluorobenzene 174.0 95.0 5000 24.00 24.50 75.0 50.0 m/z 94.90 91.71% 28.0 117.0 141.0 40 60 80 100 120 140 160 180 20 m/z--> Abundance #48816: p-Bromofiuorobenzene 174.0 95.0 24.00 24.50 5000 m/z 74.90 41.94% 75.0 50.0 31.0 130.0 155.0 20 80 100 120 140 160 180 40 60 m/z--> Abundance 24.00 24.50 #48823: Benzene, 1-bromo-3-fluoro-95.0 174.0 m/z 73.90 13.96% 75.0 5000 50.0 117.0 143.0 40 60 80 100 120 140 160 180 24.00 24.50 20 m/z-->

Similarly, characteristic spectra for surface samples are shown below.

Internal Dosimetry Group

CEMRC Lung and Whole-Body APEX *In-Vivo* radiobioassay measurement system:

Performed successfully the annual energy and efficiency calibrations of CEMRC Lung and Whole-Body APEX *In-vivo* radiobioassay measurement system during January-March 2023.

Number of *in vivo* **radiobioassay measurements performed during the reporting period**: 17 for WIPP, 38 for the contract radiological personnel and those working in the laboratories located at CEMRC, 8 for the public participants.

Outreach activities:

The Internal Dosimetry (ID) group continues to interact with the general public and encourage participation in the Lie Down and Be Counted (LDBC) project's lung and whole body in-vivo radiobioassay measurements at CEMRC. CEMRC also promotes awareness of environmental monitoring and research to the general public.

Specific activities during the reporting period:

- 1) 3/09/2023: A firefighter came for Lung and Whole-Body radiobioassay, very much interested in what ID laboratory is doing. He provided further information to contact the Carlsbad Fire department.
- 2) 3/15/2023: Carlsbad Municipal Transit employee wanted to know about CEMRC ID laboratory. Provided her an explanation and brief description of the Lung and Whole-Body radiobioassay measurement system, the meaning of the terms *in-vivo* and *in-vitro*, what is meant by base-line study and relevance with reference to WIPP, and about DOE's Lie Down and Be Counted program. She is interested in bringing her grandchildren (school students) for a tour of the laboratory.
- 3) 3/18/2023: The new ID laboratory employee provided a small video tour, through cell phone, of the Lung and Whole-Body radiobioassay measurement system to his enthusiastic ex-co-workers.