Quarterly Report

Calendar Year 2024 – Third Quarter, July 1 – September 30, 2024

Prepared by:

Carlsbad Environmental Monitoring & Research Center under a financial assistance grant from U.S. Department of Energy Carlsbad Field Office (CBFO)
Award No. DE-EM0005195

Submitted to:

U.S. Department of Energy Carlsbad Field Office

October 2024

Field Programs - Radiation Safety Group

WIPP Underground Effluent Monitoring (Station A and Station B)

From July 1st to September 30th, a total of 129 filters from the primary skid at Station A, of which 105 were sample filters, 12 were trip blanks and 12 were filter blanks, were collected. In addition, 132 filters were collected from the backup skid at Station A (108 sample filters, 12 trip blank filters and 12 filter blanks). 116 filters were collected from the primary skid at Station B, (92 sample filters, 12 trip blanks and 12 filter blanks). 112 filters were collected from Station B backup (88 sample filters, 12 trip blanks and 12 filter blanks), during the same time period.

All 129 filters from the primary skid at Station A have been processed (gravimetrics, sample flow volume, and mass concentration have been calculated in the Field Programs (FP) data package) and transferred to the Radiochemistry group (RC). All 132 of the Station A backup filters have been processed and transferred to the Environmental Chemistry group (EC). All 116 filters from the primary Station B skid have been processed and transferred to RC. All 112 of the Station B backup filters have been transferred to EC.

Ambient Air Sampling

From July 1st to September 30th 18 ambient air particulate filters were collected from the six perimeter and regional continuous sampling stations (On-Site, Near Field, Cactus Flats, WIPP East, Carlsbad, and Loving) using a high-volume sampler (HiVol). All filters have been processed (gravimetrics, total air flow values, and notes of any irregularities) by FP and transferred to RC.

Subtask - Non-Radiological analyses

Six Whatman-41 filters and 3 trip blank filters were collected from July 1st to September 30th, from the 2 sampling sites (Near Field and Cactus Flats) using a high-volume sampler. All filters have been processed (total air flow values and notes of any irregularities) by FP and transferred to EC.

Soil sampling

From July 1st to September 30th, 11 soil samples were collected.

Surface Water Monitoring

No activity to report this quarter.

Drinking Water Monitoring

From July 1st to September 30th, 8 drinking water samples were collected, out of those 1 is a Trip blank.

Sediment Monitoring

No activity to report this quarter.

Nuclear Materials Management and Safeguards

From July 1st to September 30th, the Radiation Safety group (RS) has collected and bulked radioactive waste from NMSU, LANL, and the WIPP Labs groups working in the CEMRC facility. Radiation Safety (RS) has performed monthly surveys of all laboratories where radioactive materials are present, including smears and dose rate measurements. All fume hoods are face-velocity checked quarterly. The date of the last inspection was September 26, 2024. Several survey instruments have been sent to Ludlum Corporation for calibration.

Radiochemistry Group

WIPP Underground Effluent Monitoring (Station A and Station B)

Gross alpha and beta activities on individual filters collected from station A, taken immediately before, and Station B, taken after the high-efficiency particulate air (HEPA) filtration, were counted using a low-background gas proportional counter (Protean Instruments) for 1200 minutes (20 hours). The analysis of all filters from Station A and Station B has been completed through the second week of October 2024. The complete results for gross alpha and gross beta counts on FAS filters from Station A and Station B through September 2024 were submitted to CBFO on October 11, 2024.

Between July 1st and September 30th, 2024, the following types of environmental samples were processed and analyzed:

- Alpha radiation emitting isotopes (²⁴¹Am, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²³⁴U, ²³⁵U, and ²³⁸U)
 - o Airborne particulate (HiVol) 24 samples
 - \circ Fixed Air Sampler (FAS) from Station A 9 samples
 - \circ Fixed Air Sampler (FAS) from Station B 3 samples
 - Drinking Water 3 samples
 - \circ Soil 27 samples
- Beta radiation emitting isotope (⁹⁰Sr)
 - All ⁹⁰Sr samples for all environmental samples collected in 2023 have been analyzed (one sample needs to be re-analyzed)
- Gamma radiation emitting isotopes (⁶⁰Co, ¹³⁷Cs, and ⁴⁰K)
 - Soil 24 samples
 - All environmental samples collected in 2023 have now been analyzed for gammaradiation-emitting isotopes

Characteristic results are included in the following pages.

Mirion personnel visited CEMRC in July 2024 to conduct preventive maintenance and work on the alpha radiation detectors.

New Mexico State University *

Test	Parameter	Low Limit	High Limit	New Value	Flag	
LU	015 fwhm-779 ke	1.2800E+00	2.7000E+00	2.2924E+00	<	>
LU	015 fwhm-1408 k	1.5800E+00	3.3000E+00	2.7243E+00	<	>
SD	015 Act-779 keV	1.0408E+00	4.7590E-01	1.0568E+00	<	>
SD	015 Act-1408 ke	1.0292E+00	5.0026E-01	1.1059E+00	<	>
LU	015 fwhm-122 ke	1.0200E+00	2.2000E+00	1.8067E+00	<	>
SD	015 Act-122 keV	1.0509E+00	4.5309E-01	1.1304E+00	<	>
LU	015- 122KeV Pk	1.2078E+02	1.2278E+02	1.2182E+02	<	>
LU	015-779 KeV Pk	7.7778E+02	7.7978E+02	7.7877E+02	<	>
LU	015-1408 KeV Pk	1.4069E+03	1.4089E+03	1.4082E+03	<	>

LU = Boundary Test (Ab = Above , Be = Below)
SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)
UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)
BS = Measurement Bias Test (In = Investigate, Ac = Action) Flags Key:

17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39	1745- 1760 1798- 1811 1950- 1965 2029- 2044 2193- 2213 2381- 2397 2487- 2507 2540- 2555 2697- 2723 2968- 2986 3091- 3109 3251- 3267 3310- 3328 3412- 3427 3663- 3687 3724- 3739 3961- 3977 4092- 4107 4494- 4509 4558- 4595 4796- 4812 5210- 5227 5448- 5465 5973- 5991	1752.72 1804.27 1956.34 2036.10 2200.61 2388.66 2495.61 2547.32 2709.95 2978.83 3099.20 3259.42 3320.42 3320.42 3419.06 3677.78 3731.66 3968.20 4099.46 4501.49 4568.35 4804.56 5218.91 5456.63 5982.06	427.87 440.46 477.60 497.08 537.26 583.19 609.31 621.94 661.66 727.33 756.73 795.86 810.76 834.85 898.04 911.20 968.97 1001.03 1099.22 1115.55 1173.24 1274.44 1332.50 1460.83	0.24 -3.470E+01 0.25 3.130E+01 0.24 -4.276E+00 0.24 -2.088E+01 0.48 4.206E+01 0.42 8.263E+01 2.70 6.477E+01 0.79 4.065E+00 0.54 1.533E+02 0.47 -2.761E+01 0.24 1.447E+01 0.24 3.525E+01 0.25 8.565E+00 0.25 8.565E+00 0.26 2.689E+01 0.26 2.689E+01 0.27 -4.358E+01 0.28 4.712E+00 0.28 4.712E+00 0.28 4.712E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00 0.24 -7.525E+00	70.12 62.96 63.62 64.09 72.37 62.57 92.95 62.41 82.95 59.56 51.55 54.02 51.68 65.68 42.41 41.09 38.04 37.13 74.00 36.12 36.24 32.92	6.687E+02 5.367E+02 5.363E+02 5.529E+02 4.594E+02 9.622E+02 4.436E+02 3.775E+02 3.593E+02 3.593E+02 4.522E+02 2.341E+02 2.516E+02 2.032E+02 1.723E+02 1.765E+02 1.765E+02 1.156E+02
40 41	5973- 5991 6627- 6644	5982.06 6635.81	1460.83	0.40 3.942E+01 0.46 3.244E+01	32.59	1.156E+02 9.956E+01

 $[\]begin{array}{ll} \texttt{M} = \texttt{First} \ \texttt{peak} \ \texttt{in} \ \texttt{a} \ \texttt{multiplet} \ \texttt{region} \\ \texttt{m} = \texttt{Other} \ \texttt{peak} \ \texttt{in} \ \texttt{a} \ \texttt{multiplet} \ \texttt{region} \\ \texttt{F} = \texttt{Fitted} \ \texttt{singlet} \end{array}$

* NOTE: DAILY QUALITY CONTROL SAMPLES (QC) ARE GIVEN A USER DRIVEN

* N-SIGMA TEST. INVESTIGATE MEANS THE MEASUREMENT IS BETWEEN

* 10% AND 15% OF THE BASELINE. ACTION MEANS THAT THE MEASUREMENT

IS ABOVE 15% OF THE BASELINE.

* LABORATORY CONTROL SAMPLES ARE GIVEN A BOUNDARY TEST. THE RESULT

* IS ACCEPTABLE IF IT LIES BETWEEN +/- 25% OF THE TRUE SOURCE

* ACTIVITY.

CEMRC GAMMA SPECTRUM ANALYSIS

Sample ID : STA05WK2-22 Sample Description : St. A May Week 2, 2022

Calibration ID Background ID

Sample Collection Date : 5/7/2022 12:00:00 PM Count Start Date : 9/1/2024 2:32:54 PM

Sample Aliquot : 1.00000E+00
Aliquot Unc. : 0.00000E+00
Aliquot Unit : Unit

Live Time (sec) : 172800 Real Time (sec) : 172814

Energy Calibration Used Done On : 7/16/2024
Efficiency Calibration Used Done On : 11/16/2023
Efficiency ID : DET03_70mlEff_23

%Random Unc. : 0.0 %Systematic Unc. : 0.0

Nuclide Energy Eff% UncEff% Abun% UncAbn% HL(d) UncHL(d) Conc(Bq/unit) Unc2sigma

MDC

K-40 1460.81	0.725	0.009 10.6700	0.1100	4.66412E+11	2.92192E+09	7.32776E-02	1.21610E-01
4.12828E-01 CO-60 1173.22	0.896	0.010 100.0000	0.0000	1.92518E+03	3.65240E-01	3.39792E-03	1.52087E-02
5.20848E-02 CO-60 1332.49	0.794	0.009 100.0000	0.0000	1.92518E+03	3.65240E-01	1.41140E-02	1.78020E-02
5.99383E-02 CS-137 661.65	1.535	0.021 85.1200	0.2300	1.10193E+04	1.09572E+01	-3.16644E-02	1.82502E-02
6.26085E-02 AM-241 59.54	4.746	0.000 36.3000	0.0000	1.58153E+05	0.00000E+00	2.38916E-01	2.94979E-02
0.00000E+00							

5 nuclide lines identified

Detector Name: DET03
Sample Title: STA05WK2-22
Peak Analysis Performed on: 9/3/2024 2:33:13 PM
Peak Analysis From Channel: 50
Peak Analysis To Channel: 8190

	Peak	ROI	ROI	Peak	Energy	FWHM Net Peak Net Area Continuum	
	No.	start	end	centroid	(keV)	(keV) Area Uncert. Counts	
M	1	65-	85	71.17	17.17	0.45 -6.716E-02 17.10 1.296E+01	
m	2	65-	85	79.79	19.28	0.46 -5.343E-02 13.61 5.387E+01	
	3	178-	200	191.41	46.54	0.34 5.262E-01 181.46 3.066E+03	
	4	233-	256	244.64	59.54	1.68 7.086E-02 173.63 2.513E+03	
M	5	339-	394	363.87	88.66	1.85 8.156E+01 62.24 2.537E+03	
m	6	339-	394	385.02	93.83	1.86 1.266E+02 62.66 2.108E+03	
	7	426-	443	432.04	105.31	2.08 -1.639E+02 114.10 1.593E+03	
	- 8	541-	554	547.54	133.52	0.26 4.679E+01 93.60 1.140E+03	1
	9	574-	605	596.35	145.44	0.24 -2.172E+02 189.70 3.048E+03	
	10	661-	676	669.72	163.36	0.24 -8.274E+01 102.45 1.352E+03	
	11	757-	772	763.27	186.21	0.28 2.543E+01 102.29 1.291E+03	
	12	835-	850	841.48	205.31	0.24 -5.621E+01 101.44 1.310E+03	
	13	971-	986	977.90	238.63	0.24 -1.458E+01 96.27 1.164E+03	
M	14 1	1203-	1236	1209.75	295.26	0.52 -1.009E+01 69.15 4.192E+02	
m	15 1	1203-	1236	1229.79	300.15	0.52 -1.310E+01 89.76 4.145E+02	
	16 1	1290-	1318	1296.77	316.51	0.35 -7.562E+01 135.32 1.650E+03	

```
17 1400- 1503 1410.51
                             344.29
                                     0.24 -4.492E+02 405.24
                                                                  5.534E+03
      1746- 1759
                  1752.72
                             427.87
                                      0.36 -1.321E+01
                                                         62.10
                                                                  5.482E+02
 18
      1797- 1811
                   1804.27
                             440.46
                                      0.24 -1.421E+01
                                                          64.64
                                                                  5.752E+02
 19
      1941- 1963
                             477.60
                                      0.38 -3.493E+01
                                                          87.20
                   1956.34
                                                                  8.459E+02
  20
                                      0.24 -4.164E+01
      2026- 2044
                   2036.10
                             497.08
                                                          74.02
                                                                  6.836E+02
  21
      2193- 2210
                   2200.61
                             537.26
                                       0.24 5.611E+00
                                                          66.32
                                                                  5.464E+02
                                      0.48 5.974E+01
      2376- 2399
                   2388.66
                             583.19
                                                          82.32
                                                                  6.993E+02
      2488- 2509
                             609.31
                                                          93.49
  24
                   2495.61
                                      0.24 5.113E+01
                                                                  9.549E+02
      2538- 2555
  25
                   2547.32
                             621.94
                                      0.24 -6.007E+01
                                                          70.53
                                                                  6.491E+02
      2702- 2720
                   2709.95
                                      0.45 5.051E+01
0.39 2.368E+01
  26
                             661.66
                                                          65.58
                                                                  4.965E+02
      2971- 2986
                             727.33
  27
                   2978.83
                                                          51.03
                                                                  3.313E+02
  28
      3092- 3107
                   3099.20
                             756.73 · 0.24 -2.917E+01
                                                          45.95
                                                                  2.942E+02
  29
      3252- 3267
                   3259.42
                             795.86
                                      0.27 2.725E+01
                                                          48.20
                                                                  2.928E+02
      3313- 3328
                             810.76
                                      0.24 -1.704E+01
                   3320.42
                                                                  2.930E+02
  30
                                                          46.42
      3408- 3427
3670- 3690
                                      0.24 -1.260E+01
  31
                   3419.06
                             834.85
                                                          60.77
                                                                  4.376E+02
                                       0.34 7.022E+01
  32
                   3677.78
                             898.04
                                                          55.30
                                                                  3.378E+02
                                      0.28 7.402E+01
  33
      3720- 3739
                   3731.66
                             911.20
                                                          50.60
                                                                  2.820E+02
      3961- 3976
                                      0.25 -1.717E+01
  34
                   3968.20
                             968.97
                                                          39.57
                                                                  2.262E+02
      4092- 4108
                                      0.24 5.804E+00
  35
                   4099.46
                            1001.03
                                                                  2.112E+02
                                                          40.14
                                       0.31 2.873E+01
                   4501.49
  36
      4494- 4509
                            1099.22
                                                          36.23
                                                                  1.663E+02
M 37
      4561- 4595
                   4570.25
                            1116.01
                                       0.61
                                            4.440E+00
                                                          20.88
                                                                  1.053E+02
m 38
      4561- 4595
                   4583.92
                            1119.35
                                       0.61 1.038E+01
                                                          48.72
                                                                  9.441E+01
                                            3.877E+00
1.716E+01
  39
      4797- 4812
                   4804.56
                            1173.24
                                       0.41
                                                          34.71
                                                                  1.641E+02
  40
      5210- 5227
                   5218.91
                            1274.44
                                       0.39
                                                          34.14
                                                                  1.438E+02
                                      0.24 1.426E+01
0.24 9.800E+00
  41
      5448- 5465
                  5456.63
                            1332.50
                                                          35.98
                                                                  1.627E+02
  42
     5974- 5991
                  5982.06
                            1460.83
                                                          32.53
                                                                  1.332E+02
                                      FWHM Net Peak Net Area (keV) Area Uncert.
  Peak ROI ROI
                    Peak
                             Energy
                                                                 Continuum
  No. start end centroid
                             (keV)
                                                                   Counts
 43 6627- 6644 6635.81 1620.50 0.24 -5.517E+00 26.08 9.652E+01
```

1.5

1

M = First peak in a multiplet region

F = Fitted singlet

m = Other peak in a multiplet region

************************* New Mexico State University

Report Date : 8/30/24 10:30:21 AM

QA File : C:\GENIE2K\CAMFILES\Calver3.qaf

Analyst :
Sample ID : E152

Sample Quantity : 1.00 Unit
Sample Date : 8/1/94 12:00:00 PM

Measurement Date : 8/30/24 10:20:13 AM

Elapsed Live Time : 600 seconds

Elapsed Real Time : 605 seconds

Test	Parameter	Low Limit	High Limit	New Value	Flag	
LU	015 fwhm-779 ke	1.2800E+00	2.7000E+00	2.2375E+00	<	>
LU	015 fwhm-1408 k	1.5800E+00	3.3000E+00	2.4305E+00	<	>
SD	015 Act-779 keV	1.0407E+00	4.7622E-01	1.1087E+00	<	>
SD	015 Act-1408 ke	1.0291E+00	5.0060E-01	1.0895E+00	<	>
LU	015 fwhm-122 ke	1.0200E+00	2.2000E+00	1.7965E+00	<	>
SD	015 Act-122 keV	1.0508E+00	4.5338E-01	1.1273E+00	<	>
LU	015- 122KeV Pk	1.2078E+02	1.2278E+02	1.2182E+02	<	>
LU	015-779 KeV Pk	7.7778E+02	7.7978E+02	7.7881E+02	<	>
LU	015-1408 KeV Pk	1.4069E+03	1.4089E+03	1.4083E+03	<	>

LU = Boundary Test (Ab = Above , Be = Below)Flags Key: SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)
UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)
BS = Measurement Bias Test (In = Investigate, Ac = Action)

Reviewed by:

* NOTE: DAILY QUALITY CONTROL SAMPLES (QC) ARE GIVEN A USER DRIVEN *

* N-SIGMA TEST. INVESTIGATE MEANS THE MEASUREMENT IS BETWEEN * 10% AND 15% OF THE BASELINE. ACTION MEANS THAT THE MEASUREMENT

* IS ABOVE 15% OF THE BASELINE.

* LABORATORY CONTROL SAMPLES ARE GIVEN A BOUNDARY TEST. THE RESULT * IS ACCEPTABLE IF IT LIES BETWEEN +/- 25% OF THE TRUE SOURCE ACTIVITY.

CEMRC GAMMA SPECTRUM ANALYSIS

Sample Description : SW49623R1 : SW49623R1

Calibration ID Background ID

Sample Collection Date : 6/14/2022 12:00:00 PM Count Start Date : 8/30/2024 10:51:05 AM

Sample Aliquot : 1.00000E+00 Aliquot Unc. : 0.00000E+00

Aliquot Unit : Unit

Live Time (sec) : 172800 Real Time (sec) : 172814

Energy Calibration Used Done On : 7/16/2024 Efficiency Calibration Used Done On : 11/16/2023 Efficiency ID : DET03_70mlEff_23

%Random Unc. : 0.0
%Systematic Unc. : 0.0

Nuclide Energy Eff% UncEff% Abun% UncAbn% HL(d) UncHL(d) Conc(Bq/unit) Unc2sigma

MDC

K-40 1460.81	0.725	0.009	10.6700	0.1100	4.66412E+11	2.92192E+09	2.94765E-01	1.21946E-01	
3.90171E-01 CO-60 1173.22	0.896	0.010	100.0000	0.0000	1.92518E+03	3.65240E-01	4.06993E-03	1.55978E-02	
5.32820E-02 CO-60 1332.49	0.794	0.009	100.0000	0.0000	1.92518E+03	3.65240E-01	-1.90980E-02	1.60556E-02	
5.73320E-02 CS-137 661.65	1.535	0.021	85.1200	0.2300	1.10193E+04	1.09572E+01	1.63228E-02	2.17097E-02	
7.21030E-02 AM-241 59.54	4.746	0.000	36.3000	0.0000	1.58153E+05	0.00000E+00	-4.57118E-03	2.20970E-02	
0.0000E+00									

5 nuclide lines identified

Detector Name: DET03 Sample Title: SW49623R1

10:51:25 AM

Peak Analysis Performed on: 9/1/2024 10:53
Peak Analysis From Channel: 50
Peak Analysis To Channel: 8190 50

	Peak No.	ROI start	ROI end	Peak centroid	Energy (keV)	FWHM Net Peak (keV) Area	Net Area Uncert.	Continuum Counts
	140.	Start	enu	Centrola	(KeV)	(kev) Alea	Uncert.	Counts
	1	65-	87	74.97	18.10	0.24 -2.352E+01	35.97	1.155E+02
	2	180-	205	191.41	46.54	0.43 -3.888E+01	186.90	3.043E+03
	3	236-	253	244.64	59.54	0.24 -1.356E+01	131.10	1.883E+03
М	4	339-	386	349.22	85.08	0.58 2.335E+01	108.17	7.083E+02
m	5	339-	386	358.09	87.25	0.59 7.061E+00	33.17	6.881E+02
m	6	339-	386	380.24	92.66	0.60 2.774E+01	128.45	6.425E+02
	7	422-	447	432.04	105.31	0.24 -2.989E+02	156.71	2.428E+03
	8	541-	560	547.54	1:33.52	0.47 2.355E+01	123.33	1.670E+03
	9	574-	611	589.47	143.76	0.24 -4.454E+02	220.34	3.711E+03
	10	659-	677	669.72	163.36	0.24 -1.463E+02	117.44	1.638E+03
	11	749-	771	763.27	186.21	0.32 5.049E+01	135.52	1.862E+03
	12	835-	848	841.48	205.31	0.24 -5.208E+01	91.41	1.138E+03
	13	968-	986	977.90	238.63	0.37 5.825E+01	109.31	1.335E+03
		L201-	-	1209.60	295.22	0.40 2.156E+00	166.69	2.135E+03
		1290-		1311.39	320.08	0.24 -1.234E+02	147.07	1.842E+03
		1403-		1458.54	356.02	0.31 -1.948E+02	384.20	5.118E+03

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	1745- 1798- 1950- 2029- 2193- 2381- 2487- 2540- 2968- 3091- 3251- 3310- 3412- 363- 363- 4092- 4494-	1811 1965 2044 2213 2397 2555 2723 2986 3109 3267 3328 3427 3687 3739 3977 4107	1752.72 1804.27 1956.34 2036.10 2200.61 2388.66 2495.61 2547.32 2709.95 2978.83 3099.20 3259.42 3320.42 3419.06 3677.78 3731.66 3968.20 4099.46 4501.49	427.87 440.46 477.60 497.08 537.26 583.19 609.31 621.94 661.66 727.33 756.73 795.86 810.76 834.85 898.04 911.20 968.97 1001.03 1099.22	0.24 0.25 0.24 0.48 0.42 2.70 0.79 0.54 0.24 0.25 0.24 0.36 0.26 0.24 0.24	-3.470E+01 3.130E+01 -4.276E+00 -2.088E+01 4.206E+01 8.263E+01 6.477E+01 4.065E+00 1.533E+02 -2.761E+01 1.447E+01 -3.525E+01 8.565E+00 -6.455E+00 6.081E+01 2.689E+01 -4.358E+01 -5.217E+00 4.983E+00	70.12 62.96 63.62 64.09 72.37 62.57 92.95 62.41 82.95 59.56 51.55 54.02 51.68 65.68 42.41 41.09 38.04 37.13	6.687E+02 5.367E+02 5.363E+02 5.529E+02 4.594E+02 9.622E+02 5.119E+02 6.267E+02 3.775E+02 3.593E+02 3.484E+02 3.515E+02 4.522E+02 2.341E+02 2.516E+02 2.032E+02 1.880E+02
36	4558-		4568.35	1115.55	0.36	5.261E+01	74.00	4.504E+02
37	4796-		4804.56	1173.24	0.28	4.712E+00	36.12	1.723E+02
38 39	5210- 5448-		5218.91 5456.63	1274.44 1332.50	0.24	-7.525E+00 -1.958E+01	36.24 32.92	1.765E+02 1.516E+02
40	5973-		5982.06	1460.83	0.40	3.942E+01	32.59	1.156E+02
41	6627-	6644	6635.81	1620.50	0.46	3.244E+01	29.25	9.956E+01

 $\begin{array}{ll} \textbf{M} = \textbf{First peak in a multiplet region} \\ \textbf{m} = \textbf{Other peak in a multiplet region} \\ \textbf{F} = \textbf{Fitted singlet} \end{array}$

New Mexico State University *

Report Date : 8/30/24 10:34:49 AM QA File : C:\Genie2k\CAMFILES\Calver4a.qaf QA File

QA File : C:\Geniezk\CAMFILES\C
Analyst :
Sample ID : E152
Sample Quantity : 1.00 ea
Sample Date : 8/1/94 12:00:00 AM
Measurement Date : 8/30/24 10:21:31 AM
Elapsed Live Time : 780 seconds
Elapsed Real Time : 797 seconds

Test	Parameter	Low Limit	High Limit	New Value	Flag	
LU	016_fwhm-779 ke	1.3000E+00	1.8000E+00	1.7388E+00	<	>
LU	016_fwhm-1408 k	1.6000E+00	2.4000E+00	2.5317E+00	<ab< td=""><td>></td></ab<>	>
SD	016_Act-779 keV	9.7127E-01	3.4521E-01	9.9540E-01	<	>
SD	016_ Act-1408 k	9.4407E-01	4.4374E-01	9.9934E-01	<	>
LU	016_fwhm-122 ke	8.0000E-01	1.4000E+00	9.5668E-01	<	>
SD	016_ Act-122 ke	9.6038E-01	3.4196E-01	9.9799E-01	<	>
LU	016_Pk122Kev	1.2100E+02	1.2250E+02	1.2176E+02	<	>
LU	016_Pk 779kev	7.7820E+02	7.7960E+02	7.7901E+02	<	>
LU	016_Pk1408kev	1.4073E+03	1.4087E+03	1.4082E+03	<	>

Flags Key: LU = Boundary Test

CEMRC GAMMA SPECTRUM ANALYSIS _____

Sample ID : SW49624R1
Sample Description : SW49624R1
:

Calibration ID Background ID

Sample Collection Date : 6/14/2022 12:00:00 AM Count Start Date : 8/30/2024 10:52:01 AM

Sample Aliquot : 1.00000E+00
Aliquot Unc. : 0.00000E+00
Aliquot Unit : ea

Live Time (sec) : 172800
Real Time (sec) : 173170

Energy Calibration Used Done On : 7/16/2024 Efficiency Calibration Used Done On : 11/15/2023
Efficiency ID : DET4A_70mlF

: DET4A_70mlEff_23

%Random Unc. : 0.0 %Systematic Unc. : 0.0

Nuclide Energy MDC	Eff%	UncEff%	Abun%	UncAbn%	HL(d)	UncHL(d)	Conc(Bq/unit)	Unc2sigma
K-40 1460.81 4.34939E-01	1.838	0.026	10.6700	0.1100	4.66412E+11	2.92192E+09	8.98292E-02	1.30801E-01
CO-60 1173.22 3.95547E-02	2.232	0.024]	100.0000	0.0000	1.92518E+03	3.65240E-01	3.38887E-02	1.22332E-02
CO-60 1332.49 2.92829E-02	1.992	0.026 1	100.0000	0.0000	1.92518E+03	3.65240E-01	1.88868E-02	9.00188E-03
CS-137 661.65 4.12638E-02	3.656	0.046	85.1200	0.2300	1.10193E+04	1.09572E+01	-6.05909E-03	1.23336E-02
AM-241 59.54 0.00000E+00	5.824	0.000	36.3000	0.0000	1.58153E+05	0.00000E+00	2.10982E-02	2.94823E-02

Detector Name: DET04A
Sample Title: SW49624R1
Peak Analysis Performed on: 9/1/2024 10:58:15 AM
Peak Analysis From Channel: 50
Peak Analysis To Channel: 8190

	Peak No.	ROI start	ROI end	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
	1 2	64- 187-	84 193	70.01 190.63	17.10 46.54	0.24	-2.858E+02 1.319E+01	317.08 53.95	2.220E+04 1.322E+03
М	3	235- 339-	248 361	243.89 345.55	59.54 84.35	0.75	1.649E+02 1.073E+02	86.25 62.20	2.180E+03 3.761E+02
m	5	339-	361	356.43	87.01	0.23	7.381E+01	43.05	3.420E+02
111	6	371-	386	379.34	92.60	1.08	2.021E+02	76.86	1.899E+03
	7	428-	436	431.41	105.31	0.24	1.134E+01	46.68	1.013E+03
	8	541-	553	546.99	133.52	0.24	-5.419E+01	61.85	1.473E+03
M	9	584-	603	589.20	143.82	0.87	1.271E+01	26.09	1.261E+03
m	10	584-	603	595.25	145.30	0.87	8.303E+01	30.25	1.488E+03
	11	664-	673	669.25	163.36	0.24	2.414E+01	49.47	1.071E+03
	12	757-	768	762.87	186.21	0.38	1.004E+02	60.27	1.407E+03
	13	838-	845	841.12	205.31	0.29	-6.887E+01	41.03	9.649E+02
	14	974-	987	977.63	238.63		-1.493E+01	59.46	1.472E+03
		1204-		1207.53	294.74	0.32	9.609E+00	73.69	4.234E+02
m		1204-		1232.50	300.84	0.33	5.429E+00	41.64	4.198E+02
		1288-		1296.71	316.51		-7.701E+01	107.82	2.659E+03
		1403-		1410.53	344.29	0.43	9.516E+01	61.79	1.281E+03
M		1436-		1441.56	351.86	0.88	8.806E+01	36.27	8.091E+02
m		1436-		1461.52	356.73	0.88	1.974E+01	20.16	8.607E+02
		1486-		1493.29	364.49		-9.203E+00		1.178E+03
		1747-		1752.96	427.87	0.27	-3.521E+01	49.84	1.040E+03
		1796-		1804.54	440.46	0.24	2.397E+01	53.87	1.077E+03
		1948-		1956.71	477.60	0.24	4.802E+01	38.77	6.710E+02
		2025-		2036.52	497.08		-1.782E+01	49.42	9.478E+02
		2197-		2201.14	537.26	0.26	5.656E+01	40.51	6.764E+02
		2384-		2389.32	583.19	1.87	1.320E+02	41.36	6.510E+02
		2483-		2496.33	609.31	0.38	1.442E+02	70.66	1.612E+03
	29	2535-	2558	2548.08	621.94	0.30	-3.192E+01	62.68	1.316E+03

1.5

M	30 31 32 33 34 35 36 37 38 39 40 41 42	2698- 2971- 3086- 3255- 3314- 3415- 3668- 3727- 3961- 4095- 4497- 4564- 4564-	2988 3107 3266 3335 3434 3690 3744 3984 4108 4512 4598	2710.82 2979.87 3100.32 3260.64 3321.69 3420.39 3679.28 3733.20 3969.88 4101.24 4503.53 4572.15 4593.75	661.66 727.33 756.73 795.86 810.76 834.85 898.04 911.20 968.97 1001.03 1099.22 1115.97	0.33 0.24 0.26 0.24 0.47 0.78 0.98 0.29 0.38 0.74 0.24	1.463E+02 -8.877E+00 2.954E+01 6.992E+00 5.315E+01 1.660E+02 3.806E+01 4.004E+01 2.100E+01 1.877E+01 7.673E+01 1.423E+01	48.44 38.73 41.11 25.05 40.15 41.54 41.64 31.51 35.79 23.66 24.68 20.85 16.14	8.307E+02 6.589E+02 6.435E+02 3.330E+02 6.049E+02 5.930E+02 4.159E+02 4.960E+02 2.860E+02 2.932E+02 4.025E+02 3.652E+02
	Peal No.	k ROI . start	ROI end	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
	43 44 45 46 47	4795- 5213- 5453- 5973- 6632-	5228 5469 5999	4806.79 5221.41 5459.29 5985.07 6639.25	1173.24 1274.44 1332.50 1460.83 1620.50	0.34 0.32 0.32 0.35 0.39	9.770E+01 -1.318E+01 4.860E+01 8.568E+01 3.899E-01	35.25 21.62 23.15 29.81 17.55	4.353E+02 2.382E+02 2.354E+02 3.203E+02 1.626E+02

خرر

 $\begin{array}{ll} \textbf{M} = \textbf{First peak in a multiplet region} \\ \textbf{m} = \textbf{Other peak in a multiplet region} \\ \textbf{F} = \textbf{Fitted singlet} \end{array}$

, A

Environmental Chemistry Group

From July 1st to September 30th, 2024, the Environmental Chemistry group (EC) processed anion and cation analyses for the Fixed Air Sampler (FAS) filters and the ambient air (HiVol) filters and finished the complete analyses for drinking water samples, including anions, cations, pH, total organic carbon, conductivity, specific gravity, TDS/TSS, and metals analyses, collected in 2024.

The following Tables and Figures represent characteristic results.

Proficiency Test Results

Sample Type: Proficiency Test

Year: 2024

Analysis Performed: Cations (Hardness)

WS-330 Final Evaluation Report

A Waters Company

Khue Minh Nguyen New Mexico State University 1400 University Dr CEMRC Carlsbad, NM 88220-3575

TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Z Score	Study Mean	Study Standard Deviation	Analyst Name
WS Hard	WS Hardness (cat# 555, lot# S330-693)											
1035	Calcium	mg/L	82.9	76.9	65.4 - 88.4	Acceptable	ASTM D6919-09 2009	1/17/2024	1.86	77.3	2.99	
1085	Magnesium	mg/L	11.8	11.2	9.52 - 12.9	Acceptable	ASTM D6919-09 2009	1/17/2024	0.850	11.2	0.667	
1155	Sodium	mg/L	41.2	38.5	32.7 - 44.3	Acceptable	ASTM D6919-09 2009	1/17/2024	1.29	38.9	1.76	
1550	Calcium Hardness as CaCO3	mg/L	207.3	192	163 - 221	Acceptable	ASTM D6919-09 2009	1/17/2024	1.65	193	8.49	
1755	Total Hardness as CaCO3	mg/L	255.4	238	202 - 274	Acceptable	ASTM D6919-09 2009	1/17/2024	1.69	239	9.74	

Sample Type: Proficiency Test

Year: 2024 Analysis Performed: Mercury

WS-331 Final Evaluation Report

TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Z Score	Study Mean	Study Standard Deviation	Analyst Name
WS Merc	ury (cat# 551, lot# \$331-666)											
1095	Mercury	µg/L	1.3	1.85	1.30 - 2.40	Acceptable	EPA 200.8 5.4 1994	2/14/2024	-1.81	1.77	0.260	

Sample Type: Proficiency Test **Year:** 2024

Analysis Performed: Anions (Inorganic)

WS-332 Final Evaluation Report

	(575)	234-5525										
TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Z Score	Study Mean	Study Standard Deviation	Analyst Name
WS Inorg	/S Inorganics (cat# 591, lot# S332-698)											
1505	Alkalinity as CaCO3	mg/L		144	130 - 158	Not Reported				143	4.87	
1575	Chloride	mg/L	33.5	33.5	28.5 - 38.5	Acceptable	EPA 300.0 2.1 1993	4/9/2024	-0.468	34.1	1.31	
1610	Conductivity at 25°C	µmhos/cm		595	536 - 655	Not Reported				595	12.7	
1730	Fluoride	mg/L	4.3	4.34	3.91 - 4.77	Acceptable	EPA 300.0 2.1 1993	4/9/2024	-0.857	4.45	0.175	
1820	Nitrate + Nitrite as N	mg/L		4.10	3.48 - 4.72	Not Reported				4.14	0.143	
1810	Nitrate as N	mg/L	4.2	4.10	3.69 - 4.51	Acceptable	EPA 300.0 2.1 1993	4/9/2024	0.200	4.17	0.174	
1125	Potassium	mg/L		20.4	17.3 - 23.5	Not Reported				21.1	0.950	
2000	Sulfate	mg/L	76.9	74.0	62.9 - 85.1	Acceptable	EPA 300 0 2.1 1993	4/9/2024	0.201	76.1	3.91	
1955	Total Dissolved Solids at 180°C	mg/L		517	414 - 620	Not Reported				520	18.7	

Sample Type: Proficiency Test

Year: 2024 Analysis Performed: Metals

WS-332 Final Evaluation Report

	(575)	234-5525										
TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Z Score	Study Mean	Study Standard Deviation	Analyst Name
WS Meta	ls (cat# 590, lot# \$332-697)											
1000	Aluminum	μg/L	334.6	306	245 - 367	Acceptable	EPA 200.8 5.4 1994	3/26/2024	1.00	315	19.3	
1005	Antimony	µg/L	27.1	28.0	19.6 - 36.4	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.655	28.0	1.39	
1010	Arsenic	μg/L	31.1	32.7	22.9 - 42.5	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.764	33.2	2.69	
1015	Barium	µg/L	624.8	623	530 - 716	Acceptable	EPA 200.8 5.4 1994	3/26/2024	0.0454	624	26.9	
1020	Beryllum	µg/L	11.2	10.8	9.18 - 12.4	Acceptable	EPA 200.8 5.4 1994	3/26/2024	0.817	10.7	0.626	
1025	Boron	µg/L		1430	1220 - 1640	Not Reported				1420	58.3	
1030	Cadmium	μg/L	44.5	48.1	38.5 - 57.7	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.953	46.4	1.99	
1040	Chromium	µg/L	67.9	72.5	61.6 - 83.4	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-1.53	72.4	2.98	
1055	Copper	μg/L	1457.9	1490	1340 - 1640	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.614	1500	62.9	
1070	Iron	μg/L	984.6	1040	884 - 1200	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-1.21	1050	54.0	
1075	Lead	µg/L	31.6	32.3	22.6 - 42.0	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.414	32.2	1.53	
1090	Manganese	µg/L	595.8	628	534 - 722	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-1.69	633	21.9	
1100	Molybdenum	μg/L	106.6	117	99.4 - 135	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.981	114	7.54	
1105	Nickel	µg/L	349.9	354	301 - 407	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.687	359	13.9	
1140	Selenium	µg/L	80.6	88.5	70.8 - 106	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-1.39	88.7	5.78	
1150	Silver	µg/L	20.68	22.5	15.8 - 29.2	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-1.23	22.8	1.71	
1165	Thallum	µg/L	3.3	3.46	2.42 - 4.50	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.547	3.40	0.187	
1185	Vanadium	µg/L	183.2	190	162 - 218	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.685	189	8.16	
1190	Zino	µg/L	910.9	929	790 - 1070	Acceptable	EPA 200.8 5.4 1994	3/26/2024	-0.778	940	37.9	

FAS Filters – Station A

Sample Type: FAS, Station A
Year: 2024
Analysis Performed: Metals in weekly composites

Week	Aluminum ng/m³	Cadmium ng/m ³	Lead ng/m ³	Magnesium ng/m³	Silicon ng/m ³	Thorium ng/m³	Uranium ng/m³
01/01/24	0	9	- 8	8		9	8
01/08/24							
01/15/24							
01/22/24							
02/01/24							
02/08/24							
02/15/24							
02/22/24							
03/01/24							
03/08/24							
03/15/24							
03/22/24							
04/01/24							
04/08/24							
04/15/24							
04/22/24							
05/01/24							
05/08/24							
05/15/24							
05/22/24							
06/01/24							
06/08/24							
06/15/24							
06/22/24							
07/01/24							
07/08/24							
07/15/24							
07/22/24							
08/01/24							
08/08/24							
08/15/24							
08/22/24							
09/01/24							
09/08/24							
09/15/24							
09/22/24							
10/01/24							
10/08/24							
10/15/24							
10/22/24							
11/01/24							
11/08/24							
11/15/24							
11/22/24							
12/01/24							
12/08/24							
12/15/24							
12/22/24							

NOTE: Filters were not received for the following time frames: N/A.

Sample Type: FAS, Station A
Year: 2024
Analysis Performed: Anions in weekly composites

***	Chloride	Nitrate	Phosphate	Sulfate
Week	ng/m ³	ng/m ³	ng/m ³	ng/m ³
01/01/24	1.83E+05	4.44E+02	<mdl< th=""><th>2.53E+04</th></mdl<>	2.53E+04
01/08/24	2.60E+05	3.47E+02	<mdl< th=""><th>2.56E+04</th></mdl<>	2.56E+04
01/15/24	2.78E+05	4.75E+02	<mdl< th=""><th>2.01E+04</th></mdl<>	2.01E+04
01/22/24	3.74E+05	3.01E+02	<mdl< th=""><th>5.18E+04</th></mdl<>	5.18E+04
02/01/24	2.13E+05	<mdl< th=""><th><mdl< th=""><th>3.62E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>3.62E+04</th></mdl<>	3.62E+04
02/08/24	3.43E+05	4.03E+01	<mdl< th=""><th>3.06E+04</th></mdl<>	3.06E+04
02/15/24	#VALUE!	8.64E+01	<mdl< th=""><th>1.00E+05</th></mdl<>	1.00E+05
02/22/24	1.16E+06	1.90E+02	<mdl< th=""><th>5.62E+04</th></mdl<>	5.62E+04
03/01/24	2.63E+05	2.47E+02	<mdl< th=""><th>3.15E+04</th></mdl<>	3.15E+04
03/08/24	4.15E+05	3.29E+02	<mdl< th=""><th>2.61E+04</th></mdl<>	2.61E+04
03/15/24	2.27E+05	2.08E+02	<mdl< th=""><th>3.75E+04</th></mdl<>	3.75E+04
03/22/24	1.86E+05	3.80E+02	<mdl< th=""><th>3.98E+04</th></mdl<>	3.98E+04
04/01/24	5.13E+05	2.30E+02	<mdl< th=""><th>5.93E+04</th></mdl<>	5.93E+04
04/08/24	5.03E+05	2.47E+02	<mdl< th=""><th>7.11E+04</th></mdl<>	7.11E+04
04/15/24	4.48E+05	2.33E+02	<mdl< th=""><th>4.07E+04</th></mdl<>	4.07E+04
04/22/24	4.54E+05	2.64E+02	<mdl< th=""><th>2.63E+04</th></mdl<>	2.63E+04
05/01/24	4.59E+05	3.24E+02	<mdl< th=""><th>2.85E+04</th></mdl<>	2.85E+04
05/08/24	4.12E+05	3.90E+02	<mdl< th=""><th>2.37E+04</th></mdl<>	2.37E+04
05/15/24	3.93E+05	2.13E+02	<mdl< th=""><th>2.40E+04</th></mdl<>	2.40E+04
05/22/24	1.45E+06	2.64E+02	<mdl< th=""><th>2.76E+04</th></mdl<>	2.76E+04
06/01/24	1.62E+05	3.39E+02	<mdl< th=""><th>1.53E+04</th></mdl<>	1.53E+04
06/08/24	3.01E+05	<mdl< th=""><th><mdl< th=""><th>2.20E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.20E+04</th></mdl<>	2.20E+04
06/15/24	1.42E+05	2.27E+02	<mdl< th=""><th>1.58E+04</th></mdl<>	1.58E+04
06/22/24	1.48E+05	2.88E+02	<mdl< th=""><th>1.95E+04</th></mdl<>	1.95E+04
07/01/24	1.50E+05	1.22E+02	1.10E+02	1.84E+04
07/08/24	2.46E+05	5.65E+01	<mdl< th=""><th>2.00E+04</th></mdl<>	2.00E+04
07/15/24	5.62E+04	5.11E+01	7.07E+01	1.18E+04
07/22/24	4.32E+04	<mdl< th=""><th><mdl< th=""><th>1.05E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.05E+04</th></mdl<>	1.05E+04
08/01/24				
08/08/24				
08/15/24 08/22/24				
08/22/24				
09/01/24				
09/08/24				
09/13/24				
10/01/24				
10/01/24				
10/06/24				
10/13/24				
11/01/24				
11/01/24				
11/15/24				
11/22/24				
12/01/24				
12/08/24				
12/15/24				
12/22/24				
,,				

NOTE: Filters were not received for the following time frames: N/A

Sample Type: FAS, Station A
Year: 2024
Analysis Performed: Cations in weekly composites

	G 11		3.7	D	C 1 :
Week	Sodium	Ammonium	Magnesium	Potassium	Calcium
	ng/m³	ng/m³	ng/m³	ng/m³	ng/m³
01/01/24	1.26E+06	<mdl< th=""><th>2.44E+03</th><th>2.42E+03</th><th>1.14E+04</th></mdl<>	2.44E+03	2.42E+03	1.14E+04
01/08/24	1.71E+06	<mdl< th=""><th>5.94E+02</th><th>2.21E+03</th><th>1.07E+04</th></mdl<>	5.94E+02	2.21E+03	1.07E+04
01/15/24	1.85E+06	<mdl< th=""><th>1.82E+03</th><th>1.88E+03</th><th>8.75E+03</th></mdl<>	1.82E+03	1.88E+03	8.75E+03
01/22/24	2.49E+06	<mdl< th=""><th>5.36E+02</th><th>2.40E+03</th><th>2.20E+04</th></mdl<>	5.36E+02	2.40E+03	2.20E+04
02/01/24	1.38E+06	<mdl< th=""><th>9.01E+02</th><th>3.12E+03</th><th>1.49E+04</th></mdl<>	9.01E+02	3.12E+03	1.49E+04
02/08/24	2.27E+06	<mdl< th=""><th>7.21E+02</th><th>3.63E+03</th><th>1.14E+04</th></mdl<>	7.21E+02	3.63E+03	1.14E+04
02/15/24	#VALUE!	<mdl< th=""><th>5.85E+03</th><th>1.01E+04</th><th>3.64E+04</th></mdl<>	5.85E+03	1.01E+04	3.64E+04
02/22/24	3.12E+06	<mdl< th=""><th>4.12E+03</th><th>6.45E+03</th><th>2.14E+04</th></mdl<>	4.12E+03	6.45E+03	2.14E+04
03/01/24	1.75E+06	<mdl< th=""><th>5.51E+02</th><th>2.38E+03</th><th>1.24E+04</th></mdl<>	5.51E+02	2.38E+03	1.24E+04
03/08/24	2.81E+06	<mdl< th=""><th>9.99E+02</th><th>2.80E+03</th><th>1.08E+04</th></mdl<>	9.99E+02	2.80E+03	1.08E+04
03/15/24	1.49E+06	<mdl< th=""><th>3.52E+03</th><th>4.07E+03</th><th>1.68E+04</th></mdl<>	3.52E+03	4.07E+03	1.68E+04
03/22/24	1.21E+06	<mdl< th=""><th>4.96E+02</th><th>2.13E+03</th><th>1.80E+04</th></mdl<>	4.96E+02	2.13E+03	1.80E+04
04/01/24	3.40E+06	<mdl< th=""><th>9.82E+02</th><th>3.99E+03</th><th>2.33E+04</th></mdl<>	9.82E+02	3.99E+03	2.33E+04
04/08/24	3.35E+06	<mdl< th=""><th>1.02E+03</th><th>4.07E+03</th><th>2.63E+04</th></mdl<>	1.02E+03	4.07E+03	2.63E+04
04/15/24	3.04E+06	<mdl< th=""><th>8.30E+02</th><th>2.99E+03</th><th>1.52E+04</th></mdl<>	8.30E+02	2.99E+03	1.52E+04
04/22/24	3.09E+06	<mdl< th=""><th>7.87E+02</th><th>2.87E+03</th><th>8.45E+03</th></mdl<>	7.87E+02	2.87E+03	8.45E+03
05/01/24	3.11E+06	<mdl< th=""><th>1.87E+03</th><th>3.17E+03</th><th>8.98E+03</th></mdl<>	1.87E+03	3.17E+03	8.98E+03
05/08/24	2.76E+06	<mdl< th=""><th>1.75E+03</th><th>3.07E+03</th><th>7.73E+03</th></mdl<>	1.75E+03	3.07E+03	7.73E+03
05/15/24	2.62E+06	<mdl< th=""><th>4.01E+03</th><th><mdl< th=""><th>8.32E+03</th></mdl<></th></mdl<>	4.01E+03	<mdl< th=""><th>8.32E+03</th></mdl<>	8.32E+03
05/22/24	3.82E+06	<mdl< th=""><th>1.99E+03</th><th>3.42E+03</th><th>8.50E+03</th></mdl<>	1.99E+03	3.42E+03	8.50E+03
06/01/24	1.11E+06	<mdl< th=""><th>5.38E+02</th><th>2.10E+03</th><th>4.96E+03</th></mdl<>	5.38E+02	2.10E+03	4.96E+03
06/08/24	2.01E+06	<mdl< th=""><th>2.66E+02</th><th>2.49E+03</th><th>6.58E+03</th></mdl<>	2.66E+02	2.49E+03	6.58E+03
06/15/24	9.45E+05	<mdl< th=""><th>1.46E+03</th><th><mdl< th=""><th>6.26E+03</th></mdl<></th></mdl<>	1.46E+03	<mdl< th=""><th>6.26E+03</th></mdl<>	6.26E+03
06/22/24	9.94E+05	<mdl< th=""><th>4.71E+02</th><th><mdl< th=""><th>7.79E+03</th></mdl<></th></mdl<>	4.71E+02	<mdl< th=""><th>7.79E+03</th></mdl<>	7.79E+03
07/01/24	9.91E+05	<mdl< th=""><th>1.37E+03</th><th>1.74E+03</th><th>7.83E+03</th></mdl<>	1.37E+03	1.74E+03	7.83E+03
07/08/24	1.65E+06	<mdl< th=""><th>1.72E+03</th><th>3.10E+03</th><th>6.61E+03</th></mdl<>	1.72E+03	3.10E+03	6.61E+03
07/15/24	3.61E+04	<mdl< th=""><th>9.82E+02</th><th>1.68E+03</th><th>4.93E+03</th></mdl<>	9.82E+02	1.68E+03	4.93E+03
07/22/24	2.78E+04	<mdl< th=""><th>8.22E+02</th><th>1.75E+03</th><th>4.02E+03</th></mdl<>	8.22E+02	1.75E+03	4.02E+03
08/01/24					
08/08/24					
08/15/24					
08/22/24					
09/01/24					
09/08/24					
09/15/24					
09/22/24					
10/01/24					
10/08/24					
10/15/24					
10/22/24					
11/01/24					
11/08/24					
11/15/24					
11/22/24					
12/01/24					
12/08/24					
12/15/24					
12/22/24					

NOTE: Filters were not received for the following time frames: N/A

FAS Filters – Station B

Sample Type: FAS, Station B Year: 2024

Analysis Performed: Metals in monthly composites

Month	Aluminum ng/m³	Cadmium ng/m ³	Lead ng/m ³	Magnesium ng/m³	Silicon ng/m ³	Thorium ng/m³	Uranium ng/m³
January							
February							
March							
April							
May							
June							
July							
August							
September							
October							
November							
December							

Sample Type: FAS, Station B
Year: 2024
Analysis Performed: Anions in monthly composites

Month	Chloride ng/m ³	Nitrate ng/m³	Phosphate ng/m ³	Sulfate ng/m ³
January				
February				
March				
April				
May				
June				
July				
August				
September				
October				
November				
December				

Sample Type: FAS, Station B **Year:** 2024

Analysis Performed: Cations in monthly composites

Month	Sodium ng/m ³	Ammonium ng/m³	Magnesium ng/m³	Potassium ng/m ³	Calcium ng/m ³
January					
February					
March					
April					
May					
June					
July					
August					
September					
October					
November					
December					

Whatman Filters

Sample Type: Near Field (107), ambient air Year: 2024
Analysis Performed: Metals

Start Date	Aluminum μg/m³	Cadmium μg/m³	Lead μg/m³	Silica μg/m³	Thorium µg/m³	Uranium μg/m³

Sample Type: Cactus Flats (108), ambient air Year: 2024
Analysis Performed: Metals

Start Date	Aluminum μg/m³	Cadmium μg/m³	Lead μg/m³	Silica μg/m³	Thorium µg/m³	Uranium μg/m³

Sample Type: Near Field (107), ambient air Year: 2024

Year: 2024 Analysis Performed: Anions

Start Date	Chloride μg/m³	Nitrate μg/m³	Phosphate μg/m³	Sulfate μg/m³
01/19/24	4.17E-01	1.45E+00	9.63E-04	1.02E+00
03/01/24	3.01E-01	1.78E+00	2.77E-03	1.31E+00
03/27/24	3.12E-01	1.90E+00	2.72E-03	1.78E+00
04/26/24	3.14E-01	1.98E+00	3.94E-03	1.92E+00
05/24/24	1.54E-01	1.76E+00	3.22E-03	2.59E+00
06/19/24	1.27E-01	1.92E+00	<mdl< td=""><td>1.87E+00</td></mdl<>	1.87E+00

Sample Type: Cactus Flats (108), ambient air **Year:** 2024

Analysis Performed: Anions

Start Date	Chloride µg/m³			Sulfate μg/m³
01/19/24	2.97E-01	1.58E+00	<mdl< td=""><td>1.20E+00</td></mdl<>	1.20E+00
03/01/24	2.16E-01	1.45E+00	1.49E-03	1.31E+00
03/27/24	3.11E-01	1.77E+00	1.33E-03	1.75E+00
04/26/24	2.74E-01	2.09E-03	2.07E+00	2.63E-03
05/24/24	1.52E-01	1.87E+00	2.40E-03	2.76E+00
06/19/24	1.01E-01	1.58E+00	<mdl< td=""><td>1.46E+00</td></mdl<>	1.46E+00

Sample Type: Near Field (107), ambient air Year: 2024
Analysis Performed: Cations

Start Date	Calcium μg/m³	Magnesium μg/m³	Potassium μg/m³	Sodium µg/m³
01/19/24	7.24E-01	6.65E-02	9.17E-02	2.84E-01
03/01/24	9.90E-01	6.54E-02	8.23E-02	2.43E-01
03/27/24	1.12E+00	9.49E-02	1.10E-01	3.08E-01
04/26/24	3.04E-01	2.48E-01	2.33E-02	5.45E-02
05/24/24	1.71E+00	1.96E-02	5.31E-02	4.12E-01
06/19/24	1.24E+00	2.33E-02	5.46E-02	3.04E-01

Sample Type: Cactus Flats (108), ambient air Year: 2024

Analysis Performed: Cations

Start Date	Calcium μg/m³	Magnesium μg/m³	Potassium μg/m³	Sodium μg/m³
01/19/24	8.96E-01	4.57E-02	5.38E-02	2.24E-01
03/01/24	1.01E+00	9.52E-03	2.55E-02	1.90E-01
03/27/24	1.24E+00	7.87E-02	8.55E-02	2.83E-01
04/26/24	2.78E-01	1.93E-01	2.11E-02	4.18E-02
05/24/24	1.84E+00	9.65E-02	1.05E-01	3.79E-01
06/19/24	1.89E+00	2.61E-02	5.16E-02	3.43E-01

Drinking Water

Sample Type: Drinking Water

Year: 2024 Analysis Performed: Anions

Sample Location	Chloride µg/L	Nitrate μg/L	Phosphate µg/L	Sulfate µg/L
Carlsbad (Sheep draw)	3.73E+04	4.60E+03	<mdl< th=""><th>9.26E+04</th></mdl<>	9.26E+04
Hobbs	1.19E+05	2.17E+04	<mdl< th=""><th>1.47E+05</th></mdl<>	1.47E+05
Double Eagle PRV4	3.39E+04	1.35E+04	<mdl< th=""><th>3.94E+04</th></mdl<>	3.94E+04
Loving	4.02E+04	2.03E+04	<mdl< th=""><th>1.25E+05</th></mdl<>	1.25E+05
Otis	2.31E+05	1.80E+04	<mdl< th=""><th>5.55E+05</th></mdl<>	5.55E+05
Malaga	6.46E+05	1.57E+04	<mdl< th=""><th>9.92E+05</th></mdl<>	9.92E+05

Sample Type: Drinking Water

Year: 2024
Analysis Performed: Cations

Sample Location	Calcium µg/L	Magnesium μg/L	Potassium μg/L	Sodium µg/L
Carlsbad (Sheep draw)	7.42E+04	3.00E+04	<mdl< th=""><th>2.64E+04</th></mdl<>	2.64E+04
Hobbs	1.11E+05	2.13E+04	<mdl< th=""><th>5.73E+04</th></mdl<>	5.73E+04
Double Eagle PRV4	5.22E+04	9.85E+03	3.65E+03	3.51E+04
Loving	9.01E+04	3.43E+04	<mdl< th=""><th>2.62E+04</th></mdl<>	2.62E+04
Otis	2.40E+05	6.22E+04	<mdl< th=""><th>8.79E+04</th></mdl<>	8.79E+04
Malaga	4.58E+05	1.16E+05	<mdl< th=""><th>2.06E+05</th></mdl<>	2.06E+05

Sample Type: Drinking Water

Year: 2024 Analysis Performed: pH

Sample
Location

Carlsbad (Sheep draw)

Hobbs

7.95

Double Eagle PRV4

Loving

Otis

8.26

Malaga

Sample Type: Drinking Water

Year: 2024

Analysis Performed: Total Organic Carbon

Sample Location	TOC mg/L
Sheep Draw	1.231
Hobbs	1.114
Double Eagle PRV-4	0.5095
Loving	0.7142
Otis	0.5344
Malaga	0.7121

Sample Type: Drinking Water

Year: 2024

Analysis Performed: Conductivity

Sample Location	Conductivity mS/cm	Temperature °C
Sheep Draw (Carlsbad)	0.697	21.0
Loving	0.807	21.0
Otis	1.93	21.0
Malaga	3.81	21.0
Hobbs	0.995	21.0
PRV4 (Double Eagle)	0.496	21.0

Sample Type: Drinking Water 2024
Analysis Performed: Specific gravity

Sample Location	Specific Gravity
Sheep Draw (Carlsbad)	0.995
Loving	0.996
Otis	0.997
Malaga	0.997
Hobbs	0.996
PRV4 (Double Eagle)	0.996

Sample Type: Drinking Water Year: 2024
Analysis Performed: TDS/TSS

Sample Location	TDS mg/L	TSS mg/L		
Sheep Draw (Carlsbad)	220.0	N.D.		
Loving	400.0	N.D.		
Otis	1440.0	N.D.		
Malaga	3020.0	N.D.		
Hobbs	620.0	N.D.		
PRV4 (Double Eagle)	120.0	N.D.		
N.D. = non-detect.				

Sample Type: Drinking Water Year: 2024
Analysis Performed: Metals

Metal	Carlsbad Conc μg/L	Loving Conc μg/L	Otis Conc μg/L	Malaga Conc μg/L	Hobbs Conc μg/L	Double Eagle (PRV4) Conc μg/L
Ag	7.19E-02	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<>	<mdc< td=""><td>2.00E-01</td></mdc<>	2.00E-01
Al	3.43E+00	2.04E+00	4.18E+00	6.74E+00	2.11E+00	3.55E+00
As	7.69E-01	1.72E+00	1.87E+00	2.62E+00	8.42E+00	7.82E+00
Ba	7.25E+01	3.39E+01	1.66E+01	1.34E+01	5.64E+01	1.02E+02
Be	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ca	7.44E+04	8.80E+04	2.34E+05	4.43E+05	1.13E+05	5.44E+04
Cd	5.42E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<>	1.31E-02	<mdc< td=""></mdc<>
Ce	3.10E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Co	1.35E-01	1.64E-01	4.03E-01	7.01E-01	2.01E-01	9.89E-02
Cr	1.41E+00	2.40E+00	2.12E+00	1.81E+00	1.79E+00	1.31E+00
Cu	2.63E+00	3.10E+00	5.03E+00	3.57E+00	4.72E+00	1.64E+00

Dy	<mdc< th=""><th><mdc< th=""><th><mdc< th=""><th><mdc< th=""><th><mdc< th=""><th><mdc< th=""></mdc<></th></mdc<></th></mdc<></th></mdc<></th></mdc<></th></mdc<>	<mdc< th=""><th><mdc< th=""><th><mdc< th=""><th><mdc< th=""><th><mdc< th=""></mdc<></th></mdc<></th></mdc<></th></mdc<></th></mdc<>	<mdc< th=""><th><mdc< th=""><th><mdc< th=""><th><mdc< th=""></mdc<></th></mdc<></th></mdc<></th></mdc<>	<mdc< th=""><th><mdc< th=""><th><mdc< th=""></mdc<></th></mdc<></th></mdc<>	<mdc< th=""><th><mdc< th=""></mdc<></th></mdc<>	<mdc< th=""></mdc<>
Er	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Eu	1.86E-02	8.17E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.51E-02</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.51E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>2.51E-02</td></mdc<>	2.51E-02
Fe	2.80E+02	3.32E+02	1.02E+03	1.73E+03	1.05E+03	2.34E+02
Gd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
K	1.30E+03	1.90E+03	2.86E+03	3.99E+03	2.74E+03	2.96E+03
La	4.46E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Li	7.43E+00	2.13E+01	4.32E+01	6.44E+01	3.72E+01	2.06E+01
Mg	3.47E+04	3.91E+04	7.69E+04	1.32E+05	2.71E+04	1.13E+04
Mn	4.99E-01	3.01E-02	6.79E-02	4.45E-01	1.24E+00	1.08E+00
Мо	1.36E+00	1.67E+00	3.47E+00	4.00E+00	2.72E+00	1.93E+00
Na	2.60E+04	2.58E+04	8.73E+04	1.94E+05	5.59E+04	3.48E+04
Nd	3.23E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ni	3.38E+00	3.88E+00	1.12E+01	1.85E+01	5.45E+00	2.43E+00
Р	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pb	3.14E-01	2.26E-01	<mdc< td=""><td>2.36E-01</td><td>1.24E+00</td><td>4.70E-01</td></mdc<>	2.36E-01	1.24E+00	4.70E-01
Pr	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sb	3.22E-02	3.41E-02	4.56E-02	4.34E-02	6.71E-02	3.43E-02
Sc	1.84E+00	2.92E+00	3.26E+00	3.17E+00	7.42E+00	4.82E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	6.29E+03	9.89E+03	1.04E+04	1.05E+04	2.60E+04	1.65E+04
Sr	3.49E+02	8.33E+02	2.91E+03	5.80E+03	1.28E+03	5.93E+02
Th	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
TI	1.09E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<>	2.13E-02	1.23E-02
U	8.22E-01	1.94E+00	3.83E+00	5.67E+00	3.77E+00	1.71E+00
V	3.79E+00	1.16E+01	1.04E+01	7.93E+00	3.16E+01	3.17E+01
Zn	8.28E+00	4.95E+00	2.66E+01	8.69E+00	3.81E+01	6.81E+00

Surface Water

Sample Type: Surface Water Year: 2024
Analysis Performed: Anions

Sample Location	Chloride µg/L	Nitrate μg/L	Phosphate µg/L	Sulfate µg/L
Hill Tank	4.54E+03	5.60E+02	5.09E+02	1.38E+04
Noya Tank	4.46E+04	<mdl< th=""><th><mdl< th=""><th>6.44E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>6.44E+03</th></mdl<>	6.44E+03
Pierce Canyon	1.69E+06	4.06E+03	<mdl< th=""><th>1.77E+06</th></mdl<>	1.77E+06
Lake Carlsbad (Shallow)				
Lake Carlsbad (Deep)				
Brantley Lake (Shallow)				
Brantley (Deep)				
Red Bluff (Shallow)				
Red Bluff (Deep)				

Sample Type: Surface Water Year: 2024
Analysis Performed: Cations

Sample	Calcium	Magnesium	Potassium	Sodium
Location	μg/L	μg/L	μg/L	μg/L
Hill Tank	6.75E+04	8.91E+03	2.44E+04	2.41E+03
Noya Tank	2.13E+05	1.55E+04	4.25E+04	1.28E+04
Pierce Canyon	5.68E+05	2.12E+05	4.16E+04	9.76E+05
Lake Carlsbad (Shallow)				
Lake Carlsbad (Deep)				
Brantley Lake (Shallow)				
Brantley Lake (Deep)				
Red Bluff (Shallow)				
Red Bluff (Deep)				

Sample Type: Surface Water Year: 2024

Analysis Performed: pH

Sample Location	pH @ 24°C
Hill Tank	8.782
Noya Tank	8.180
Pierce Canyon	8.338
Lake Carlsbad (Shallow)	
Lake Carlsbad (Deep)	
Brantley Lake (Shallow)	
Brantley Lake (Deep)	
Red Bluff (Shallow)	
Red Bluff (Deep)	

Sample Type: Surface Water Year: 2024

Analysis Performed: Conductivity

Sample Location	Conductivity mS/cm	Temperature °C
Hill Tank	0.456	20.0
Noya Tank	0.533	20.3
Pierce Canyon	9.83	19.9
Lake Carlsbad (Shallow)		
Lake Carlsbad (Deep)		
Brantley Lake (Shallow)		
Brantley Lake (Deep)		

Red Bluff (Shallow)	
Red Bluff (Deep)	

Sample Type: Surface Water Year: 2024
Analysis Performed: Specific gravity

Sample Location	SG T/4°C
Hill Tank	0.987
Noya Tank	0.980
Pierce Canyon	0.983
Lake Carlsbad (Shallow)	
Lake Carlsbad (Deep)	
Brantley Lake (Shallow)	
Brantley (Deep)	
Red Bluff (Shallow)	
Red Bluff (Deep)	

Sample Type: Surface Water **Year:** 2024 Analysis Performed: TOC

Sample	TOC
Location	mg/L
Hill Tank	14.66
Noya Tank	115.0
Pierce Canyon	5.665
Lake Carlsbad (Shallow)	
Lake Carlsbad (Deep)	
Brantley Lake (Shallow)	
Brantley (Deep)	
Red Bluff (Shallow)	
Red Bluff (Deep)	

Sample Type: Surface Water Year: 2024 Analysis Performed: TDS/TSS

Sample Location	TDS mg/L	TSS mg/L
Hill Tank	160.00	140.00
Noya Tank	460.00	520.00
Pierce Canyon	5620.00	220.00
Lake Carlsbad (Shallow)		
Lake Carlsbad (Deep)		
Brantley Lake (Shallow)		
Brantley (Deep)		
Red Bluff (Shallow)		
Red Bluff (Deep)		

Sample Type: Surface Water Year: 2024 Analysis Performed: Metals

	Hill Tank	Noya Tank	Pierce Canyon
Metal	Conc	Conc	Conc
	μg/L	μg/L	μg/L
Ag	<mdc< td=""><td>4.32E-01</td><td><mdc< td=""></mdc<></td></mdc<>	4.32E-01	<mdc< td=""></mdc<>
Al	4.56E+02	1.68E+04	1.14E+02
As	7.34E+00	2.86E+01	<mdc< td=""></mdc<>
Ва	2.11E+02	3.04E+03	4.09E+01
Be	<mdc< td=""><td>3.21E+00</td><td><mdc< td=""></mdc<></td></mdc<>	3.21E+00	<mdc< td=""></mdc<>
Ca	6.39E+04	4.46E+05	5.39E+05
Cd	<mdc< td=""><td>1.45E+00</td><td><mdc< td=""></mdc<></td></mdc<>	1.45E+00	<mdc< td=""></mdc<>
Ce	1.93E+00	1.13E+02	5.51E-01
Co	1.17E+00	3.08E+01	1.54E+00
Cr	1.58E+00	1.35E+01	<mdc< td=""></mdc<>
Cu	1.18E+01	4.30E+01	3.05E+00
Dy	1.67E-01	1.04E+01	<mdc< td=""></mdc<>
Er	7.77E-02	4.72E+00	3.78E-02
Eu	<mdc< td=""><td>4.26E+00</td><td><mdc< td=""></mdc<></td></mdc<>	4.26E+00	<mdc< td=""></mdc<>
Fe	4.32E+02	1.19E+04	1.78E+03
Gd	2.47E-01	1.63E+01	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
K	2.15E+04	4.58E+04	1.66E+04
La	8.98E-01	4.98E+01	<mdc< td=""></mdc<>
Li	4.43E+00	2.40E+01	8.34E+01
Mg	9.69E+03	3.77E+04	2.15E+05
Mn	9.24E+01	4.88E+03	2.14E+01
Мо	9.23E-01	1.43E+00	4.02E+00
Na	2.26E+03	1.24E+04	9.31E+05
Nd	1.03E+00	6.30E+01	<mdc< td=""></mdc<>
Ni	4.79E+00	5.48E+01	2.44E+01
Р	2.76E+02	5.85E+03	<mdc< td=""></mdc<>
Pb	<mdc< td=""><td>7.41E+01</td><td><mdc< td=""></mdc<></td></mdc<>	7.41E+01	<mdc< td=""></mdc<>
Pr	2.39E-01	1.38E+01	<mdc< td=""></mdc<>
Sb	6.35E-01	8.23E-01	<mdc< td=""></mdc<>
Sc	1.73E+00	9.05E+00	1.08E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	6.56E+03	2.91E+04	4.67E+03
Sr	3.13E+02	9.98E+02	8.50E+03
Ŧh			
TI	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
U	7.27E-01	1.49E+00	8.19E+00
V	1.77E+01	1.16E+02	5.13E+00
Zn	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>

Shallow Conc Conc Conc Li Li Li Li Li Li Li L		Brantle	ey Lake	Lake (Carlsbad	Red	Bluff
Ag μg/L μg/L μg/L μg/L μg/L Al ————————————————————————————————————		Shallow	Deep	Shallow	Deep	Shallow	Deep
Ag Al As Ba Be Be Ca Ca Cd Ce Co Cr Cu Co Dy Cr Eu Fe Fe Co Gd Gd Hg Co K Co La Co Mn Co Mo Co Na No Na No Pe Co Sb Co Sc Se Sc Se Si Si Th Th	Metal				Conc		Conc
As Ba Be Be Ca Ca Cd Ce Co Cr Cu Dy Be Be Cu Cu Dy Be Er Be Eu Be Fe Gd Gd Ge Hg Hg K K La Li Li Mg Mn Mn Mo Na Na Na P P Pb P Pr Sb Sc Se Si Sr Th Th Th Th Th Th Ti Th	•	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
As Ba Be Be Ca Ca Cd Ce Co Cr Cu Dy Be Be Cu Cu Dy Be Er Be Eu Be Fe Gd Gd Ge Hg Hg K K La Li Li Mg Mn Mn Mo Na Na Na P P Pb P Pr Sb Sc Se Si Sr Th Th Th Th Th Th Ti Th	Ag						
Ba Be Ca Ca Cd Ce Co Cr Cu Dy Er Eu Eu Fe Gd G Hg K La Li Mg Mn Mo Na Na Na Nd Ni P P Sb Sc Se Se Si Sr Th Ti U U							
Be Ca Ca Cd Ce Co Co Cr Cu Dy Er Cu Eu Cu Fe Cu Gd Cu Hg Cu K Cu Li Cu Mg Cu Mn Cu Mo Cu Na Na Na Na Ni Cu P Cu Pb Cu Pr Cu Sb Cu Sc Cu Sc Cu Sc Cu Si Cu Th Cu Th Cu Th Cu Th Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Ca Cd Ce Co Co Cr Cu Dy Er Eu Eu Eu Fe Gd Gd Hg K La Li Mg Mn Mn Mo Na Nd Ni P P Pb P Sc Se Si Sr Th TI U U							
Cd Ce							
Ce Co Cr Cr Cu Dy Er Eu Fe Gd Gd Hg K La Li Wh Mg Mn Mo Na Na Na Ni P Pb P Sc Sc Se Sc Si Sr Th Ti U U							
Co Cr Cu Dy Er Eu Fe Gd Hg K La Li Mg Mn Mo Na Nd Ni P Pb Sc Se Si Sr Th TI U U							
Cr Cu Dy Er Eu Fe Gd Hg K La Li Mg Mn Mo Na Ni P Pb Pc Sb Sc Si Sr Th U U							
Cu Dy Er							
Dy Er Eu Bu Fe Bu Gd Bu Hg Bu K Bu La Bu Li Bu Mg Bu Mn Bu Ma Bu Ni Bu P Bu Pr Bu Sb Bu Sc Bu Si Bu Sr Bu Th Bu Ti Bu U U V U							
Er Eu							
Eu	Dy						
Fe Gd Hg Hg K Hg La Hg Mg Hg Mn Hg Mo Hg Na Hg Na Hg Ni Hg P Hg Pb Hg Pr Hg Sb Hg Sc Hg Si Hg Sr Hg Th Hg Ti Hg U U							
Gd Hg Hg Hg K Hg La Hg Li Hg Mg Hg Mn Hg Mo Hg Na Hg Nd Hg Ni Hg P Hg Ph Hg Pr Hg Sb Hg Sc Hg Se Hg Si Hg Sr Hg Th Hg Ti Hg U U V Hg							
Hg K La Li Mg Mn Mo Mo Na Na Nd Ni P P Pb P Pr Sb Sc Sc Se Si Sr Th Ti U V V							
K							
La Li Mg Mn Mo Na Nd Ni P Pb Pr Sb Sc Se Si Th TI U V							
Li Mg Mn Mn Mo Na Na Nd Ni P P Pb Pr Sb Sc Sc Sc Se Si Si Th Ti U V							
Mg							
Mn							
Mo							
Na Nd Ni Ni P P Pb P Pr Sb Sc Sc Se Si Si Sr Th TI U U							
Nd Ni Ni P Pb Pr Sb Sc Sc Se Si Sr Th TI U U V V							
Ni P Pb P Pr Sb Sc Sc Se Si Sr Th Th TI U U V V	Nd						
Pb Pb Pr Sb Sc Sc Se Si Sr Th TI U V V							
Pb Pr Sb Sc Sc Se Si Sr Th TI U V							
Pr Sb Sc Sc Se Si Sr Th TI U V V							
Sb Sc Sc Se Si Sr Th TI U V							
Sc Se Si Sr Th TI U V	Sh						
Se Si Sr Th TI U V V							
Si							
Sr Th TI U V V							
Th							
TI U V V							
U V							
V							
	Zn						

Internal Dosimetry Group

Number of *in vivo* radiobioassay measurements performed during the reporting period: None for WIPP, 16 for the contract radiological personnel and those working in the laboratories located at CEMRC, and 2 for the public participants.

Outreach activities:

The Internal Dosimetry group continues to interact with the public to encourage citizens to participate in the Lie Down and Be Counted (LDBC) project's lung and whole body in-vivo radiobioassay measurements at CEMRC. CEMRC also promotes awareness of environmental monitoring and research to the public.

The following activities took place during the reporting period of July 1st to September 30th, 2024:

7/16/2024: LANL Interns

Explained about in-vivo radiobioassay concepts using Lung and Whole-Body gamma spectroscopy and handed out the flyers about the Lie down and Be Counted program to around 15 visitors who are all in engineering fields.

7/18/2024

Interacted and spoke with middle-school-aged students of Boys and Girls Club of Carlsbad at Southeast New Mexico College at a "College Readiness" event. Unable to provide LDBC brochures due to the students being underage, however, recommended and encouraged students to stop by CEMRC with a guardian to sign up for the LDBC program.

8/22/2024

Informal visit by two WIPP contractors seeking to gain a better understanding of CEMRC. They spent almost an hour with the Lung and Whole-Body gamma spectroscopy system in the ID lab, to understand radioactivity measurements. They both signed up for LDBC counting. One visitor participated and was counted. Waiting on the other person to be counted.