Quarterly Report

Calendar Year 2025 – Second Quarter, April 1 – June 30, 2025

Prepared by:

Carlsbad Environmental Monitoring & Research Center under a financial assistance grant from U.S. Department of Energy Carlsbad Field Office (CBFO) Award No. DE-EM0005195

Submitted to:

U.S. Department of Energy Carlsbad Field Office

July 2025

Field Programs - Radiation Safety Group

WIPP Underground Effluent Monitoring (Station B)

From April1st to June 30th, a total of 116 filters were collected from the primary skid at Station B, (92 sample filters, 12 trip blanks and 12 filter blanks). Twenty-four filters were collected from Station B backup (18 sample filters, 3 trip blanks and 3 filter blanks), during the same time period.

All 116 filters from the primary skid at Station B have been processed (gravimetrics, sample flow volume, and mass concentration have been calculated in the Field Programs (FP) data package) and transferred to the Radiochemistry group (RC). All 24 of the Station B backup filters were transferred to Environmental Chemistry group (EC).

Ambient Air Sampling

From April1st to June 30th, 25 ambient air particulate filters were collected from the six perimeter and regional continuous sampling stations (On-Site, Near Field, Cactus Flats, WIPP East, Carlsbad, and Loving) using a high-volume sampler (HiVol). All filters have been processed (gravimetrics, total air flow values, and notes of any irregularities) by FP and transferred to RC.

Subtask - Non-Radiological analyses

From April1st to June 30th, 8 Whatman-41 filters and 4 trip blank filters were collected, from the 2 sampling sites (Near Field and Cactus Flats) using a high-volume sampler. All filters have been processed (total air flow values and notes of any irregularities) by FP and transferred to EC.

Soils sampling

From April1st to June 30th, 30 soil samples were collected and are currently being processed.

Vegetation sampling

From April1st to June 30th, 3 vegetation samples were collected and are currently being processed.

Surface Water Monitoring

From April 1st to June 30th, 8 surface water samples were collected. All samples were processed and transferred to both the EC and RC groups.

Drinking Water Monitoring

No activity to report this quarter.

Sediment Monitoring

No activity to report this quarter.

Groundwater Monitoring

From April1st to June 30th, 5 groundwater samples were collected. All samples were transferred to RC and EC.

Nuclear Materials Management and Safeguards

From April1st to June 30th, the Radiation Safety group (RS) has collected and bulked radioactive waste from NMSU, LANL, and the WIPP Labs groups working in the CEMRC facility. Radiation Safety has performed monthly surveys of all laboratories where radioactive materials are present, including smears and dose rate measurements. All fume hoods are face-velocity checked quarterly. The date of the last inspection was June 11, 2025.

Radiochemistry Group

WIPP Underground Effluent Monitoring (Station B)

Gross alpha and beta activities on individual filters collected from Station B, taken after the highefficiency particulate air (HEPA) filtration, were counted using a low-background gas proportional counter (Protean Instruments) for 1200 minutes (20 hours). The analysis of all filters from Station B through the first week of July 2025 has been completed. The complete results for gross alpha and gross beta counts on FAS filters from Station B through June 2025 were submitted to CBFO on July 14, 2025.

As of June 30, 2025, all 2024 samples have been analyzed. However, several samples with low recovery rates are currently being re-prepared and will be reanalyzed. Data processing is ongoing, and the 2024 annual report is in preparation. In addition:

- MAPEP evaluation Passed all analytes except for Sr-90 on vegetation and soil, which only half of all MAPEP participating labs passed this year. This means we passed 34/36 analytes for the recent MAPEP.
- Performed method development for radium analysis
- Received 12 EM water samples and gamma counted
- Performed method development for FAS, Soil, and Sediments to improve safety and efficiency
- 2023 annual report corrections and re-analysis for Am on soils and sediments
- 2024 annual report data processing and analysis

Characteristic results are included in the following pages.

Procedure Description: Pu - 5 days Detector Name: 5-06 Env. Background: System Bkgd 70981

2.5000E-01 +/- 0.0000E+00 unit Sample Size: Sample Date/Time: 1/1/2024 10:00:00 AM 6/13/2025 1:12:36 PM Acquisition Date/Time: Acquisition Live Time: 7200.0 minutes Acquisition Real Time: 7200.0 minutes

Tracer Certificate: 450 Pu-242 T Tracer Quantity: 0.068 mL Counting Efficiency: 0.1825 +/- 0.0037 on 7/19/2024 9:36:38 PM Chem. Rec. Factor (%): 81.38 +/- 2.8638

			PEAF	(AREA R	EPORT	
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)
PU-238 PU-239 PU-242	 T	5.463 5.127 4.863	2.00 6.00 1219.00	400.00 105.41 5.73	7.00 2.00 1.00	3.4 5.1 40.5

T = Tracer Peak used for Effective Efficiency

		NUCLIDE ANALYSIS RE	SULTS
Nuclide	Energy	Activity	MDA
	(keV)	(Bq /unit)	(Bq /unit)
PU-238	5487.10*	1.262E-04 +/- 5.050E-04	1.269E-03 +/- 7.334E-05
PU-239	5147.70*	3.744E-04 +/- 3.953E-04	7.495E-04 +/- 4.330E-05
PU-242	4890.70*	7.569E-02 +/- 4.373E-03	5.766E-04 +/- 3.331E-05

[PS	0

Sample Description: Spectrum File: C:\Canberra\ApexAlpha\Root\Data\0000065119.cnf Batch Identification: 24FASB U Sample Identification: BU1 Procedure Description: Uranium Detector Name: 2-11 Env. Background: System Bkgd 27852 Sample Size: 2.5000E-01 +/- 0.0000E+00 unit Sample Date/Time: 1/1/2024 10:00:00 AM Sample Date/Time:1/1/202410:00:00 AMAcquisition Date/Time:2/5/20254:43:27 PMAcquisition Live Time:7200.0 minutes Acquisition Real Time: 8444.3 minutes 1320 U232 T Tracer Certificate: Tracer Quantity: 0.049 mL Counting Efficiency: 0.1866 +/- 0.0037 on 7/22/2024 12:44:53 PM Chem. Rec. Factor (%): 81.38 +/- 4.9607

			PEAF	K AREA R	EPORT	
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)
U-232 U-234 U-235	Т	5.274 4.725 4.401	1247.00 186.00 5.00	5.70 15.28 144.22	9.00 8.00 4.00	41.9 12.5 3.4
U-238		4.139	139.00	18.48	13.00	5.5

T = Tracer Peak used for Effective Efficiency

		NUCLIDE ANALYSIS RE	 SULTS
Nuclide	Energy	Activity	MDA
	(keV)	(Bq /unit)	(Bq /unit)
U-232	5302.50*	7.704E-02 +/- 8.870E-03	1.386E-03 +/- 1.596E-04
U-234	4761.50*	1.137E-02 +/- 2.175E-03	1.302E-03 +/- 1.499E-04
U-235	4385.50*	3.769E-04 +/- 5.453E-04	1.196E-03 +/- 1.377E-04
U-238	4184.40*	8.457E-03 +/- 1.841E-03	1.607E-03 +/- 1.851E-04

 Alpha NID Report
 6/4/2025
 1:46:20 AM

 Page 2 of 2
 2

UD = User Driven N-Sigma Test (In = Investigate, Ac = Action) BS = Measurement Bias Test (In = Investigate, Ac = Action)

Reviewed by:	
***********	**
* NOTE: DAILY QUALITY CONTROL SAMPLES (QC) ARE GIVEN A USER DRIVEN	*
* N-SIGMA TEST. INVESTIGATE MEANS THE MEASUREMENT IS BETWEEN	*
* 10% AND 15% OF THE BASELINE. ACTION MEANS THAT THE MEASUREMENT	*
* IS ABOVE 15% OF THE BASELINE.	*
* LABORATORY CONTROL SAMPLES ARE GIVEN A BOUNDARY TEST. THE RESULT	*
* IS ACCEPTABLE IF IT LIES BETWEEN +/- 25% OF THE TRUE SOURCE	*
* ACTIVITY.	*
***********	**

CEMRC	GAMMA S	SPECTRUM	ANALYSIS
Sample ID Sample Description	: Sed54724 : Sed54724 :		
Calibration ID Background ID	:		
Sample Collection Date Count Start Date	: 12/4/2024 : 5/5/2025	1:00:00 PM 4:01:49 PM	
Sample Aliquot Aliquot Unc. Aliquot Unit	: 4.02600E-01 : 0.00000E+00 : kg)	
Live Time (sec) Real Time (sec)	: 172800 : 172988		
Energy Calibration Used Efficiency Calibration Efficiency ID	Done On Jsed Done On	: 7/16/2024 : 7/16/2024 : DET01_SoilEff_24	
%Random Unc. %Systematic Unc.	: 0.0 : 0.0		

Nuclide MDC	Energy	Eff%	UncEff%	abun%	UncAbn%	HL(d)	UncHL(d)	Conc(Bq/unit)	Unc2sigma
K-40	1460.81	0.993	0.037	10.6700	0.1100	4.66412E+11	2.92192E+09	4.31216E+02	1.69101E+01
3.60741	E+00								
CO-60	1173.22	1.181	0.024	100.0000	0.0000	1.92518E+03	3.65240E-01	4.79829E-02	7.43667E-02
2.46757	E-01								
CO-60	1332.49	1.069	0.031	100.0000	0.0000	1.92518E+03	3.65240E-01	-1.15013E-01	9.05401E-02
3.04475	E-01								
CS-137	661.65	1.807	0.030	85.1200	0.2300	1.10193E+04	1.09572E+01	4.76411E-01	8.14762E-02
2.60049	E-01								
AM-241 0.00000	59.54 E+00	1.132	0.000	36.3000	0.0000	1.58153E+05	0.00000E+00	2.57943E-01	5.74653E-01

5 nuclide lines identified

****** PEAKANALYSIS REPORT *****

De Sa Pe	etecton ample T eak Ana	r Name Title: alysis Pea Pea	: DET01 Sed5472 Performed k Analysis k Analysis	4 on: 5/7 From Cha To Chann	/2025 nnel: el:	4:05:01 50 8190	PM	
Peak	ROI	ROI	Peak	Energy	FWHM	Net Peak	Net Area	Continuum
No.	start	end	centroid	(keV)	(keV)	Area	Uncert.	Counts
1	182-	196	189.76	46.50	1.03	4.062E+02	294.04	7.360E+03
2	235-	250	243.03	59.50	0.31	7.371E+01	328.37	8.931E+03
3	965-	984	977.07	238.63	1.62	1.677E+04	458.53	1.330E+04
4	1427-	1454	1441.35	351.93	1.95	1.701E+04	370.46	5.764E+03
5	1950-	1963	1956.32	477.60	0.26	-3.387E+01	122.48	2.014E+03
6	2372-	2404	2389.00	583.19	2.39	7.238E+03	275.77	3.837E+03
7	2466-	2493	2477.14	604.70	0.95	-9.836E+02	346.91	1.076E+04
8	2696-	2720	2710.55	661.66	0.80	5.048E+02	171.84	2.866E+03
9	2961-	2990	2979.66	727.33	2.95	1.787E+03	191.03	2.751E+03
10	3242-	3270	3260.64	795.90	2.20	8.288E+02	163.89	2.247E+03

11	3713- 3	3751	3733.11	911.20	3.18	5.139E+03	231.57	2.800E+03
12	4793-	4815	4806.90	1173.24	0.33	3.732E+01	115.66	1.616E+03
13	5209-	5230	5221.96	1274.53	0.24	-1.285E+01	97.20	1.187E+03
14	5436-	5472	5459.51	1332.50	0.24	-8.101E+01	127.46	1.538E+03
15	5961-	6008	5985.38	1460.83	4.83	3.183E+04	388.17	1.991E+03

Alpha/Beta Count Results

Air Filter Sample Activity Report

Batch ID 2024 Soil WIPP Sediments

Count Method FAS Gross Alpha Beta

Sample ID 54662

Flow Time On 1/1/1900 Off 1/1/1900		ime Flow Rate 0.00 LPM 0.00 LPM		ate LPM LPM	Bkg Time 1,200.0 min Total Flow Time 0.0 min Total Sampled Volume 1.0000 e+00		inutes Count Time 1, inutes Count Began 4/16 000 Sample Count Ended 4/17		1,200.0 minutes 6/2025 3:45:08 7/2025 11:46:19	,200.0 minutes i/2025 3:45:08 PM '/2025 11:46:19 AM	
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Con I	centration 3q	% of DAC	DAC-Hrs	
Alpha	1.000	0.052	0.071	0.08	0 2.2846 e-003	0.0000 e+000	1.3355 e-003	± 7.0449 e-004	0.000	0.000	
sd	I	0.007	0.008	0.04	2		7.0449 e-004				
Beta	1.000	0.750	0.836	0.20	4.8942 e-003	0.0000 e+000	3.4600 e-003	± 1.5016 e-003	0.000	0.000	
sd		0.025	0.026	0.09	0		1.5016 e-003				

Sample ID 54662blank

Flow Time Flow		Flow R	ate	Bkg T	ime 1,200.0 m	inutes	Count Time	1,200.0 minutes	DM	
On Off	on 1/1/1900 0.00 LPM off 1/1/1900 0.00 LPM			Total Sampled Volume 1.0000 e+0		000 Sample Count Ended 4/16		17/2025 3:46:07	/2025 11:47:21 AM	
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Con	centration 3q	% of DAC	DAC-Hrs
Alpha	1.000	0.073	0.071	-0.00	07 2.7461 e-003	0.0000 e+000	-1.1912 e-004	± 7.9013 e-004	0.000	0.000
sc	l l	0.008	0.008	0.04	17		7.9013 e-004			
Beta	1.000	0.580	0.732	0.38	35 4.4270 e-003	0.0000 e+000	6.4222 e-003	± 1.4031 e-003	0.000	0.000
so	1	0.022	0.025	0.08	34		1.4031 e-003			

Sample ID 54662LCS

Addr. 2

Addr: 4

Addr: 1

	Flow Time Flow Rate		ate	Bkg Time 1,20		200.0 minutes Count		1,200.0 minutes	6	
On 1/1/1900 Off 1/1/1900			0.00 LPM 0.00 LPM		Total Flow T Total Sampled Volu	ime 0.0 m ime 1.0000 e+0	inutes)00 Sample	Count Began 4/16/2025 3:46:13 Count Ended 4/17/2025 11:47:2		PM 7 AM
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Con	centration Bq	% of DAC	DAC-Hrs
Alpha	1.000	0.060	0.065	0.02	1 2.5117 e-003	0.0000 e+000	3.5719 e-004	± 7.2915 e-004	0.000	0.000
sd		0.007	0.007	0.04	4		7.2915 e-004			
Beta	1.000	0.478	5.218	12.00	2 4.0124 e-003	0.0000 e+000	2.0003 e-001	± 3.7294 e-003	0.000	0.000
sd		0.020	0.066	0.22	4		3.7294 e-003			

Protean Instrument Corporation

Alpha/Beta Count Results

Air Filter Sample Activity Report

Batch ID 2024 Soil WIPP Sediments

Count Method FAS Gross Alpha Beta

Sample ID 54663

Flow Time Flow Rat On 1/1/1900 0.00 Li Off 1/1/1900 0.00 Li		ate LPM LPM	Bkg Time 1,3 Total Flow Time Total Sampled Volume 1.0		1,200.0 minutes 0.0 minutes C 1.0000 e+000 Sample C		Count Time 1,200.0 minutes Count Began 4/16/2025 3:45:15 PM Count Ended 4/17/2025 11:46:25 AM			
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Con	centration Bq	% of DAC	DAC-Hrs
Alpha	1.000	0.034	0.055	0.08	38 1.9169 e-003	0.0000 e+000	1.4744 e-003	± 6.1073 e-004	0.000	0.000
sd		0.005	0.007	0.03	37		6.1073 e-004			
Beta	1.000	0.591	0.731	0.35	51 4.4605 e-003	0.0000 e+000	5.8421 e-003	± 1.4052 e-003	0.000	0.000
sd		0.022	0.025	0.08	34		1.4052 e-003			

Sample ID 54664

Flow Time On 1/1/1900 Off 1/1/1900		Flow Rate 0.00 LPM 0.00 LPM		Bkg Time1,200.Total Flow Time0.Total Sampled Volume1.0000		minutes Count Time minutes Count Began 4/ a+000 Sample Count Ended 4/		1,200.0 minutes 16/2025 3:45:22 PM (17/2025 11:46:40 AM		
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Con	centration 3q	% of DAC	DAC-Hrs
Alpha	1.000	0.034	0.055	0.0	1.8927 e-003	0.0000 e+000	1.4559 e-003	± 6.0303 e-004	0.000	0.000
sd		0.005	0.007	0.0	36		6.0303 e-004			
Beta	1.000	0.535	0.578	0.1	05 4.2578 e-003	0.0000 e+000	1.7563 e-003	± 1.2910 e-003	0.000	0.000
sd		0.021	0.022	0.0	77		1.2910 e-003			

Sample ID 54718

Addr: 8

Addr: 5

Addr: 6

	Flow Time	9	Flow Ra	ate	Bkg T	ime 1,200.0 m	inutes	Count Time 1,	200.0 minutes	
On 1/1/1900 Off 1/1/1900		0.00 LPM 0.00 LPM		Total Flow T Fotal Sampled Volu	ime 0.0 m ime 1.0000 e+0	inutes)00 Sample	Count Began 4/16 Count Ended 4/17	/2025 3:45:31 /2025 11:46:46	PM S AM	
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Cor	centration Bq	% of DAC	DAC-Hrs
Alpha	1.000	0.037	0.060	0.098	8 1.9510 e-003	0.0000 e+000	1.6272 e-003	± 6.2671 e-004	0.000	0.000
sd		0.006	0.007	0.038	8		6.2671 e-004			
Beta	1.000	0.367	0.604	0.608	8 3.5897 e-003	0.0000 e+000	1.0129 e-002	± 1.2275 e-003	0.000	0.000
sd		0.017	0.022	0.074	4		1.2275 e-003			

Protean Instrument Corporation

Vista 2000

[PS 0

Sample Description: C:\Canberra\ApexAlpha\Root\Data\0000064587.cnf Spectrum File: Batch Identification: 2024 Vegetation Sample Identification: Am54730 Procedure Description: Am - 5 Days 1-04 Detector Name: System Bkgd 71009 Env. Background: Sample Size: 1.0000E-02 +/- 0.0000E+00 kg Sample Date/Time: 5/7/2025 2:36:26 PM Acquisition Date/Time: 5/7/2025 2:36:26 PM Acquisition Live Time: 7200.0 minutes Acquisition Real Time: 7200.0 minutes Tracer Certificate: 1322 Am-243-4 T 0.106 mL Tracer Quantity: Counting Efficiency: 0.2074 +/- 0.0041 on 2/8/2025 12:46:47 PM Chem. Rec. Factor (%): 85.86 +/- 2.3645

			PEAK	area ri	EPORT	
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)
AM-241 AM-243	T	5.427 5.204	0.00 2914.00	2000.0 3.71	11.00 0.00	5.2 112.0

T = Tracer Peak used for Effective Efficiency

		NUCLIDE ANALYSIS RE	SULTS
Nuclide	Energy	Activity	MDA
	(keV)	(Bq /kg)	(Bq /kg)
AM-241	5479.10*	0.000E+00 +/- 1.220E-02	3.189E-02 +/- 1.224E-03
AM-243	5270.00*	3.802E+00 +/- 1.459E-01	9.602E-03 +/- 3.685E-04

C E M	IRC (дамма 	SPECT	RUM AN	ALYSIS		
Sample ID Sample Description	: :	Veg54729 Veg54729					
Calibration ID Background ID	:						
Sample Collection D Count Start Date)ate : :	12/12/2024 4/4/2025	8:30:00 # 8:38:37 #	AM AM			
Sample Aliquot Aliquot Unc. Aliquot Unit	: :	5.00000E-0 0.00000E+0 kg)2)0				
Live Time (sec) Real Time (sec)	:	172800 172970					
Energy Calibration Efficiency Calibra Efficiency ID	n Used Do ition Use	one On ed Done On	: 7/16/20 : 7/17/20 : DET01_0)24)24 MarEff_24			
%Random Unc. %Systematic Unc.	:	0.0 0.0					
Nuclide Energy E MDC	ff% Unc	cEff% Abun%	UncAbn%	HL(d)	UncHL(d)	Conc(Bq/unit)	Unc2sigma
K-40 1460.81 C).819 0.	.036 10.670	0 0.1100	4.66412E+11	2.92192E+09	3.00541E+02	1.64035E+0
CO-60 1173.22 C	.989 0.	.025 100.000	0.0000	1.92518E+03	3.65240E-01	1.32343E-01	3.22911E-0
1.08706E+00 CO-60 1332.49 C 1.17535E+00).889 0.	.029 100.000	0.0000	1.92518E+03	3.65240E-01	1.32191E-01	3.48699E-0
CS-137 661.65 1	.504 0.	.060 85.120	0.2300	1.10193E+04	1.09572E+01	2.93131E-01	3.25906E-0
AM-241 59.54 C	.523 0.	.000 36.300	0.0000	1.58153E+05	0.00000E+00	2.13573E+00	3.37029E+00

0.00000E+00

5 nuclide lines identified

*****	*****	*****	*****	*****	*****	*****	******	*****
* * * * *		Р	EAK	ANALY	SIS	REPO	RΤ	* * * * *
* * * * * *	* * * * * * *	* * * * * *	* * * * * * * * *	* * * * * * * * * *	******	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *
D S P	etecto: ample : eak Ana	r Name Fitle: alysis Pea Pea	: DET01 Veg547 Performe k Analysi k Analysi	29 d on: 4/3 s From Cha s To Chanr	30/2025 annel: nel:	2:04:24 50 8190	PM	
Pea. No	k ROI . star†	ROI t end	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
1 2 3 4 5 6 7 8 9 10 11 12 13	182- 240- 972- 1434- 1947- 2382- 2469- 2704- 2704- 3253- 3726- 4798- 5213-	196 248 983 1452 1968 2405 2493 2719 2989 3269 3742 4815 5230	189.76 243.03 977.07 1441.35 1956.32 2389.00 2477.14 2710.55 2979.66 3260.64 3733.11 4806.90 5221.96	46.50 59.50 238.63 351.93 477.60 583.19 604.70 661.66 727.33 795.90 911.20 1173.24 1274.53	0.77 1.10 0.61 0.38 2.06 0.47 0.24 0.28 0.24 0.24 0.24 0.24 0.24 0.24 0.34	2.342E+02 3.500E+01 2.965E+02 1.201E+02 6.758E+02 1.517E+02 7.261E+02 3.220E+01 1.507E+01 -1.422E+01 5.888E+01 1.085E+01 7.966E+00	156.48 110.43 116.77 124.94 122.94 109.47 132.27 71.56 71.43 64.77 62.07 52.96 47.39	2.045E+03 1.413E+03 1.552E+03 1.603E+03 1.305E+03 1.71E+03 6.578E+02 6.299E+02 5.462E+02 4.881E+02 3.771E+02 3.030E+02
14 15	5450- 5963-	5469 6008	5459.51 5985.38	1332.50 1460.83	0.37 3.36	9.745E+00 2.304E+03	51.41 134.55	3.383E+02 7.568E+02

Environmental Chemistry Group

From April 1st to June 30th, 2025, the Environmental Chemistry (EC) group processed the anions and cations analyses for the Whatman-41 filters (3rd and 4th Quarters of 2024), Fixed Air Sampler (FAS) filters station B monthly composite, and the metal analysis for FAS station A weekly composite and FAS station B monthly composite collected in 2024. In addition, the EC group conducted analyses for samples collected in 2025. The anions, cations, pH, conductivity, specific gravity, and TDS/TSS analyses were completed for ground water (sets 3, 4, 5, and 6) and surface water (sets 1 and 2) samples. The surface water (sets 1 and 2) also had the mercury and metals analyses processed.

The following tables and figures represent characteristics results.

Sample Type:	FAS, Station A
Year:	2024
Analysis Performed:	Metals in weekly composites

Wook	Aluminum	Cadmium	Lead	Magnesium	Silicon	Thorium	Uranium
WEEK	ng/m ³	ng/m ³	ng/m ³	ng/m ³	ng/m ³	ng/m ³	ng/m ³
01/01/24	3.541E+02	7.771E-01	1.734E+00	2.872E+03	1.555E+03	3.915E-02	4.171E-02
01/08/24	6.487E+02	5.299E-01	3.190E+00	2.736E+03	2.072E+03	9.054E-02	5.364E-02
01/15/24	4.620E+02	5.456E-01	2.409E+00	2.053E+03	1.609E+03	5.537E-02	4.556E-02
01/22/24	4.158E+02	6.172E-01	5.892E+00	2.511E+03	1.588E+03	4.713E-02	5.793E-02
02/01/24	6.351E+02	8.106E-01	5.713E+00	3.627E+03	2.158E+03	7.739E-02	6.772E-02
02/08/24	4.292E+02	7.309E-01	1.183E+01	3.240E+03	1.502E+03	5.033E-02	4.989E-02
02/15/24	8.788E+02	5.618E-01	1.043E+01	5.282E+03	2.541E+03	1.368E-01	1.152E-01
02/22/24	6.300E+02	6.838E-01	1.791E+01	3.394E+03	2.061E+03	9.390E-02	7.676E-02
03/01/24	4.911E+02	5.307E-01	1.263E+01	2.637E+03	1.631E+03	6.812E-02	5.148E-02
03/08/24	6.495E+02	5.516E-01	8.971E+00	4.285E+03	2.212E+03	8.853E-02	7.748E-02
03/15/24	4.502E+02	5.334E-01	3.785E+00	3.632E+03	1.625E+03	5.826E-02	7.277E-02
03/22/24	6.182E+02	5.604E-01	9.250E+00	2.362E+03	2.046E+03	1.026E-01	6.682E-02
04/01/24	6.791E+02	7.853E-01	7.430E+00	3.647E+03	2.234E+03	9.813E-02	7.241E-02
04/08/24	6.778E+02	6.987E-01	1.087E+01	4.150E+03	2.227E+03	9.454E-02	8.553E-02
04/15/24	5.603E+02	5.565E-01	1.187E+01	2.874E+03	1.825E+03	8.021E-02	5.916E-02
04/22/24	5.142E+02	5.874E-01	4.997E+00	2.704E+03	1.763E+03	7.748E-02	4.822E-02
05/01/24	5.117E+02	5.208E-01	1.210E+01	2.514E+03	1.621E+03	6.229E-02	3.815E-02
05/08/24	4.334E+02	5.742E-01	9.238E+00	2.307E+03	1.500E+03	5.420E-02	3.375E-02
05/15/24	5.090E+02	4.701E-01	1.282E+01	2.428E+03	1.717E+03	6.618E-02	4.018E-02
05/22/24	5.284E+02	4.942E-01	6.109E+00	2.521E+03	1.738E+03	7.442E-02	3.861E-02
06/01/24	3.139E+02	5.935E-01	6.843E+00	1.659E+03	1.065E+03	3.676E-02	2.895E-02
06/08/24	2.258E+02	6.707E-01	5.133E+00	1.440E+03	9.632E+02	2.715E-02	2.097E-02
06/15/24	2.370E+02	5.775E-01	6.594E+00	1.495E+03	9.498E+02	3.127E-02	2.445E-02
06/22/24	1.638E+02	7.371E-01	7.160E+00	1.522E+03	8.948E+02	2.150E-02	2.361E-02
07/01/24	3.206E+02	4.341E-01	1.118E+00	1.075E+03	9.859E+02	4.241E-02	2.528E-02
07/08/24	3.219E+02	6.244E-01	2.546E+00	1.586E+03	1.160E+03	3.827E-02	2.791E-02
07/15/24	3.411E+02	4.473E-01	2.757E+00	1.003E+03	1.068E+03	4.412E-02	2.425E-02
07/22/24	1.832E+02	5.486E-01	7.338E+00	8.801E+02	8.351E+02	2.538E-02	1.753E-02
08/01/24	4.589E+02	5.226E-01	7.291E+00	9.930E+02	1.549E+03	5.367E-02	2.887E-02
08/08/24	2.394E+02	7.449E-01	8.626E+00	9.246E+02	1.554E+03	2.903E-02	2.188E-02
08/15/24	2.026E+02	5.152E-01	4.268E+00	8.952E+02	1.048E+03	2.489E-02	2.612E-02
08/22/24	2.027E+02	5.797E-01	2.482E+00	8.906E+02	1.098E+03	2.602E-02	2.082E-02
09/01/24	7.966E+01	4.626E-01	8.993E+00	7.731E+02	4.818E+02	<mdl< th=""><th>1.240E-02</th></mdl<>	1.240E-02
09/08/24	2.437E+02	6.601E-01	5.731E+00	1.454E+03	1.037E+03	2.741E-02	3.066E-02
09/15/24	1.089E+02	5.464E-01	7.662E+00	6.476E+02	5.802E+02	<mdl< th=""><th>1.430E-02</th></mdl<>	1.430E-02
09/22/24	1.773E+02	4.899E-01	4.191E+00	8.626E+02	7.677E+02	2.219E-02	2.157E-02
10/01/24	3.234E+02	4.510E-01	3.283E+00	1.283E+03	1.222E+03	3.990E-02	3.641E-02
10/08/24							
10/21/24	<mdl< th=""><th>1.232E+00</th><th>1.926E+00</th><th>7.822E+02</th><th>2.294E+03</th><th><mdl< th=""><th>1.578E-02</th></mdl<></th></mdl<>	1.232E+00	1.926E+00	7.822E+02	2.294E+03	<mdl< th=""><th>1.578E-02</th></mdl<>	1.578E-02
10/22/24	3.366E+02	3.605E-01	2.918E+00	1.602E+03	1.198E+03	4.268E-02	4.864E-02

11/01/24	3.041E+02	3.517E-01	2.860E+00	1.928E+03	1.075E+03	3.785E-02	3.989E-02
11/08/24	3.651E+02	4.125E-01	2.858E+00	3.750E+03	1.226E+03	4.513E-02	1.021E-01
11/15/24							
11/22/24							
12/01/24							
12/08/24							
12/15/24							
12/22/24							

NOTE: Filters were not received for the following time frames: 10/08/24-10/20/24, 11/15/24-12/31/24

Sample Type:FAS, Station AYear:2024Analysis Performed:Anions in weekly composites

Week	Chloride	Nitrate	Phosphate	Sulfate
01/01/01	ng/m ³	ng/m ³	ng/m ³	ng/m ³
01/01/24	9.13E+04	2.22E+02	<mdl< th=""><th>1.2/E+04</th></mdl<>	1.2/E+04
01/08/24	1.30E+05	1.73E+02	<mdl< th=""><th>1.28E+04</th></mdl<>	1.28E+04
01/15/24	1.39E+05	2.38E+02	<mdl< th=""><th>1.01E+04</th></mdl<>	1.01E+04
01/22/24	1.87E+05	1.51E+02	<mdl< th=""><th>2.59E+04</th></mdl<>	2.59E+04
02/01/24	1.06E+05	<mdl< th=""><th><mdl< th=""><th>1.81E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.81E+04</th></mdl<>	1.81E+04
02/08/24	1.72E+05	<mdl< th=""><th><mdl< th=""><th>1.53E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.53E+04</th></mdl<>	1.53E+04
02/15/24	4.47E+05	4.32E+01	<mdl< th=""><th>5.02E+04</th></mdl<>	5.02E+04
02/22/24	2.32E+05	9.49E+01	<mdl< th=""><th>2.81E+04</th></mdl<>	2.81E+04
03/01/24	1.32E+05	1.23E+02	<mdl< th=""><th>1.57E+04</th></mdl<>	1.57E+04
03/08/24	2.08E+05	1.64E+02	<mdl< th=""><th>1.31E+04</th></mdl<>	1.31E+04
03/15/24	1.14E+05	1.04E+02	<mdl< th=""><th>1.87E+04</th></mdl<>	1.87E+04
03/22/24	9.28E+04	1.90E+02	<mdl< th=""><th>1.99E+04</th></mdl<>	1.99E+04
04/01/24	2.57E+05	1.15E+02	<mdl< th=""><th>2.96E+04</th></mdl<>	2.96E+04
04/08/24	2.52E+05	1.24E+02	<mdl< th=""><th>3.56E+04</th></mdl<>	3.56E+04
04/15/24	2.24E+05	1.17E+02	<mdl< th=""><th>2.04E+04</th></mdl<>	2.04E+04
04/22/24	2.27E+05	1.32E+02	<mdl< th=""><th>1.31E+04</th></mdl<>	1.31E+04
05/01/24	2.30E+05	1.62E+02	<mdl< th=""><th>1.42E+04</th></mdl<>	1.42E+04
05/08/24	2.06E+05	1.95E+02	<mdl< th=""><th>1.18E+04</th></mdl<>	1.18E+04
05/15/24	1.97E+05	1.07E+02	<mdl< th=""><th>1.20E+04</th></mdl<>	1.20E+04
05/22/24	2.90E+05	1.32E+02	<mdl< th=""><th>1.38E+04</th></mdl<>	1.38E+04
06/01/24	8.09E+04	1.69E+02	<mdl< th=""><th>7.63E+03</th></mdl<>	7.63E+03
06/08/24	1.50E+05	<mdl< th=""><th><mdl< th=""><th>1.10E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.10E+04</th></mdl<>	1.10E+04
06/15/24	7.11E+04	1.13E+02	<mdl< th=""><th>7.89E+03</th></mdl<>	7.89E+03
06/22/24	7.39E+04	1.44E+02	<mdl< th=""><th>9.74E+03</th></mdl<>	9.74E+03
07/01/24	7.48E+04	6.09E+01	5.50E+01	9.19E+03
07/08/24	1.23E+05	<mdl< th=""><th><mdl< th=""><th>9.99E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>9.99E+03</th></mdl<>	9.99E+03
07/15/24	2.81E+04	2.55E+01	3.53E+01	5.88E+03
07/22/24	2.16E+04	<mdl< th=""><th><mdl< th=""><th>5.24E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>5.24E+03</th></mdl<>	5.24E+03
08/01/24	4.44E+04	1.24E+02	<mdl< th=""><th>9.68E+03</th></mdl<>	9.68E+03
08/08/24	3.64E+04	<mdl< th=""><th><mdl< th=""><th>8.98E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>8.98E+03</th></mdl<>	8.98E+03
08/15/24	3.92E+04	1.00E+02	<mdl< th=""><th>1.15E+04</th></mdl<>	1.15E+04
08/22/24	3.08E+04	1.10E+02	<mdl< th=""><th>7.15E+03</th></mdl<>	7.15E+03
09/01/24	2.10E+04	<mdl< th=""><th><mdl< th=""><th>5.05E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>5.05E+03</th></mdl<>	5.05E+03
09/08/24	4.58E+04	<mdl< th=""><th><mdl< th=""><th>1.25E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.25E+04</th></mdl<>	1.25E+04
09/15/24	2.28E+04	<mdl< th=""><th><mdl< th=""><th>6.18E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>6.18E+03</th></mdl<>	6.18E+03
09/22/24	3.58E+04	<mdl< th=""><th><mdl< th=""><th>8.58E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>8.58E+03</th></mdl<>	8.58E+03
10/01/24	2.32E+04	1.56E+02	<mdl< th=""><th>5.28E+03</th></mdl<>	5.28E+03
10/08/24				
10/21/24	2.23E+04	<mdl< th=""><th><mdl< th=""><th>7.78E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>7.78E+03</th></mdl<>	7.78E+03
10/22/24	5.16E+04	1.33E+02	<mdl< th=""><th>1.54E+04</th></mdl<>	1.54E+04
11/01/24	1.18E+05	8.83E+01	<mdl< th=""><th>1.33E+04</th></mdl<>	1.33E+04
11/08/24	6.48E+04	1.14E+02	<mdl< th=""><th>4.03E+04</th></mdl<>	4.03E+04
11/15/24				
11/22/24				
12/01/24				
12/08/24				
12/15/24				
12/22/24				

NOTE: Filters were not received for the following time frames: 10/08/24-10/20/24, 11/15/2024-12/31/2024

Sample Type:FAS, Station AYear:2024Analysis Performed:Cations in weekly composites

Week	Sodium ng/m ³	Ammonium ng/m ³	Magnesium ng/m ³	Potassium ng/m ³	Calcium ng/m ³
01/01/24	6.28E+04	<mdl< th=""><th>1.22E+03</th><th>1.21E+03</th><th>5.68E+03</th></mdl<>	1.22E+03	1.21E+03	5.68E+03
01/08/24	8.56E+04	<mdl< th=""><th>2.97E+02</th><th>1.10E+03</th><th>5.34E+03</th></mdl<>	2.97E+02	1.10E+03	5.34E+03
01/15/24	9.25E+04	<mdl< th=""><th>9.08E+02</th><th>9.40E+02</th><th>4.37E+03</th></mdl<>	9.08E+02	9.40E+02	4.37E+03
01/22/24	1.25E+05	<mdl< th=""><th>2.68E+02</th><th>1.20E+03</th><th>1.10E+04</th></mdl<>	2.68E+02	1.20E+03	1.10E+04
02/01/24	6.88E+04	<mdl< th=""><th>4.50E+02</th><th>1.56E+03</th><th>7.43E+03</th></mdl<>	4.50E+02	1.56E+03	7.43E+03
02/08/24	1.13E+05	<mdl< th=""><th>3.60E+02</th><th>1.81E+03</th><th>5.70E+03</th></mdl<>	3.60E+02	1.81E+03	5.70E+03
02/15/24	3.21E+05	<mdl< th=""><th>2.92E+03</th><th>5.07E+03</th><th>1.82E+04</th></mdl<>	2.92E+03	5.07E+03	1.82E+04
02/22/24	1.56E+05	<mdl< th=""><th>2.06E+03</th><th>3.22E+03</th><th>1.07E+04</th></mdl<>	2.06E+03	3.22E+03	1.07E+04
03/01/24	8.76E+04	<mdl< th=""><th>2.76E+02</th><th>1.19E+03</th><th>6.19E+03</th></mdl<>	2.76E+02	1.19E+03	6.19E+03
03/08/24	1.40E+05	<mdl< th=""><th>5.00E+02</th><th>1.40E+03</th><th>5.40E+03</th></mdl<>	5.00E+02	1.40E+03	5.40E+03
03/15/24	7.45E+04	<mdl< th=""><th>1.76E+03</th><th>2.03E+03</th><th>8.40E+03</th></mdl<>	1.76E+03	2.03E+03	8.40E+03
03/22/24	6.06E+04	<mdl< th=""><th>2.48E+02</th><th>1.07E+03</th><th>8.98E+03</th></mdl<>	2.48E+02	1.07E+03	8.98E+03
04/01/24	1.70E+05	<mdl< th=""><th>4.91E+02</th><th>1.99E+03</th><th>1.16E+04</th></mdl<>	4.91E+02	1.99E+03	1.16E+04
04/08/24	1.68E+05	<mdl< th=""><th>5.08E+02</th><th>2.03E+03</th><th>1.32E+04</th></mdl<>	5.08E+02	2.03E+03	1.32E+04
04/15/24	1.52E+05	<mdl< th=""><th>4.15E+02</th><th>1.49E+03</th><th>7.59E+03</th></mdl<>	4.15E+02	1.49E+03	7.59E+03
04/22/24	1.54E+05	<mdl< th=""><th>3.94E+02</th><th>1.43E+03</th><th>4.23E+03</th></mdl<>	3.94E+02	1.43E+03	4.23E+03
05/01/24	1.55E+05	<mdl< th=""><th>9.34E+02</th><th>1.59E+03</th><th>4.49E+03</th></mdl<>	9.34E+02	1.59E+03	4.49E+03
05/08/24	1.38E+05	<mdl< th=""><th>8.76E+02</th><th>1.53E+03</th><th>3.87E+03</th></mdl<>	8.76E+02	1.53E+03	3.87E+03
05/15/24	1.31E+05	<mdl< th=""><th>2.01E+03</th><th><mdl< th=""><th>4.16E+03</th></mdl<></th></mdl<>	2.01E+03	<mdl< th=""><th>4.16E+03</th></mdl<>	4.16E+03
05/22/24	1.91E+05	<mdl< th=""><th>9.97E+02</th><th>1.71E+03</th><th>4.25E+03</th></mdl<>	9.97E+02	1.71E+03	4.25E+03

06/01/24	5.54E+04	<mdl< th=""><th>2.69E+02</th><th>1.05E+03</th><th>2.48E+03</th></mdl<>	2.69E+02	1.05E+03	2.48E+03
06/08/24	1.00E+05	<mdl< th=""><th>1.33E+02</th><th>1.24E+03</th><th>3.29E+03</th></mdl<>	1.33E+02	1.24E+03	3.29E+03
06/15/24	4.73E+04	<mdl< th=""><th>7.30E+02</th><th><mdl< th=""><th>3.13E+03</th></mdl<></th></mdl<>	7.30E+02	<mdl< th=""><th>3.13E+03</th></mdl<>	3.13E+03
06/22/24	4.97E+04	<mdl< th=""><th>2.36E+02</th><th><mdl< th=""><th>3.90E+03</th></mdl<></th></mdl<>	2.36E+02	<mdl< th=""><th>3.90E+03</th></mdl<>	3.90E+03
07/01/24	4.96E+04	<mdl< th=""><th>6.87E+02</th><th>8.70E+02</th><th>3.91E+03</th></mdl<>	6.87E+02	8.70E+02	3.91E+03
07/08/24	8.23E+04	<mdl< th=""><th>8.61E+02</th><th>1.55E+03</th><th>3.30E+03</th></mdl<>	8.61E+02	1.55E+03	3.30E+03
07/15/24	1.80E+04	<mdl< th=""><th>4.91E+02</th><th>8.38E+02</th><th>2.47E+03</th></mdl<>	4.91E+02	8.38E+02	2.47E+03
07/22/24	1.39E+04	<mdl< th=""><th>4.11E+02</th><th>8.74E+02</th><th>2.01E+03</th></mdl<>	4.11E+02	8.74E+02	2.01E+03
08/01/24	2.94E+04	<mdl< th=""><th>3.12E+02</th><th>3.16E+02</th><th>4.09E+03</th></mdl<>	3.12E+02	3.16E+02	4.09E+03
08/08/24	5.03E+04	<mdl< th=""><th>1.73E+02</th><th>3.40E+02</th><th>7.10E+03</th></mdl<>	1.73E+02	3.40E+02	7.10E+03
08/15/24	2.58E+04	<mdl< th=""><th>3.10E+02</th><th>4.16E+02</th><th>5.19E+03</th></mdl<>	3.10E+02	4.16E+02	5.19E+03
08/22/24	2.11E+04	<mdl< th=""><th>3.33E+02</th><th>5.19E+02</th><th>3.08E+03</th></mdl<>	3.33E+02	5.19E+02	3.08E+03
09/01/24	1.42E+04	<mdl< th=""><th>2.97E+02</th><th>2.55E+02</th><th>2.18E+03</th></mdl<>	2.97E+02	2.55E+02	2.18E+03
09/08/24	3.09E+04	<mdl< th=""><th>4.56E+02</th><th>9.31E+02</th><th>4.94E+03</th></mdl<>	4.56E+02	9.31E+02	4.94E+03
09/15/24	1.61E+04	<mdl< th=""><th>1.50E+02</th><th>1.05E+02</th><th>2.50E+03</th></mdl<>	1.50E+02	1.05E+02	2.50E+03
09/22/24	2.35E+04	<mdl< th=""><th>2.75E+02</th><th>4.70E+02</th><th>4.00E+03</th></mdl<>	2.75E+02	4.70E+02	4.00E+03
10/01/24	1.55E+04	<mdl< th=""><th>6.41E+02</th><th>6.82E+02</th><th>2.88E+03</th></mdl<>	6.41E+02	6.82E+02	2.88E+03
10/08/24					
10/21/24	1.44E+04	<mdl< th=""><th><mdl< th=""><th>8.65E+02</th><th>3.00E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>8.65E+02</th><th>3.00E+03</th></mdl<>	8.65E+02	3.00E+03
10/22/24	3.41E+04	<mdl< th=""><th>5.91E+02</th><th>1.23E+03</th><th>6.57E+03</th></mdl<>	5.91E+02	1.23E+03	6.57E+03
11/01/24	7.97E+04	<mdl< th=""><th>9.17E+02</th><th>1.59E+03</th><th>4.47E+03</th></mdl<>	9.17E+02	1.59E+03	4.47E+03
11/08/24	4.20E+04	<mdl< th=""><th>1.99E+03</th><th>3.86E+03</th><th>1.46E+04</th></mdl<>	1.99E+03	3.86E+03	1.46E+04
11/15/24					
11/22/24					
12/01/24					
12/08/24					
12/15/24					
12/22/24					

NOTE: Filters were not received for the following time frames: 10/08/24-10/20/24, 11/15/2024-12/31/2024

FAS Filters – Station B

Sample Type:	FAS, Station B
Year:	2024
Analysis Performed:	Metals in monthly composites

Aluminum Cadmium Lead Magnesium Silicon Thorium Uranium Month ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ January 63.97 0.40 0.11 46.32 532.7 <MDC <MDC February <MDC 0.38 0.15 45.55 434.2 <MDC <MDC 0.39 March <MDC 0.12 <MDC 376.5 <MDC <MDC 69.80 0.42 0.14 44.81 420.4 0.01 0.005 April 0.12 May 73.60 0.43 48.93 490.5 <MDC <MDC 63.89 0.44 0.14 45.94 388.1 <MDC <MDC June <MDC 0.41 0.23 41.98 348.2 <MDC <MDC July August <MDC 0.40 0.15 48.33 360.2 <MDC <MDC September <MDC 0.44 0.18 42.32 334.5 <MDC <MDC 0.16 October <MDC 0.38 46.71 386.8 <MDC 0.005 November <MDC 0.38 0.12 <MDC 304.3 <MDC <MDC 0.11 <MDC 315.4 December <MDC 0.38 <MDC <MDC

Sample Type:FAS, Station BYear:2024Analysis Performed:Anions in monthly composites

Month	Chloride ng/m ³	Nitrate ng/m ³	Phosphate ng/m ³	Sulfate ng/m ³
January	7.18E+02	<mdl< th=""><th><mdl< th=""><th>2.02E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.02E+02</th></mdl<>	2.02E+02
February	6.69E+02	<mdl< th=""><th><mdl< th=""><th>1.87E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.87E+02</th></mdl<>	1.87E+02
March	6.05E+02	<mdl< th=""><th><mdl< th=""><th>1.70E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.70E+02</th></mdl<>	1.70E+02
April	6.02E+02	<mdl< th=""><th><mdl< th=""><th>1.89E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.89E+02</th></mdl<>	1.89E+02
May	7.62E+02	<mdl< th=""><th><mdl< th=""><th>2.10E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.10E+02</th></mdl<>	2.10E+02
June	7.05E+02	<mdl< th=""><th><mdl< th=""><th>2.09E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.09E+02</th></mdl<>	2.09E+02
July	6.80E+02	<mdl< th=""><th><mdl< th=""><th>2.06E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.06E+02</th></mdl<>	2.06E+02
August	6.55E+02	<mdl< th=""><th><mdl< th=""><th>2.02E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.02E+02</th></mdl<>	2.02E+02
September	9.05E+02	<mdl< th=""><th><mdl< th=""><th>2.15E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.15E+02</th></mdl<>	2.15E+02
October	6.42E+02	<mdl< th=""><th><mdl< th=""><th>1.99E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.99E+02</th></mdl<>	1.99E+02
November	7.26E+02	<mdl< th=""><th><mdl< th=""><th>1.79E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.79E+02</th></mdl<>	1.79E+02
December	6.40E+02	<mdl< th=""><th><mdl< th=""><th>1.87E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.87E+02</th></mdl<>	1.87E+02

Sample Type:FAS, Station BYear:2024

Analysis Performed: Cations in monthly composites

Month	Sodium ng/m ³	Ammonium ng/m ³	Magnesium ng/m ³	Potassium ng/m ³	Calcium ng/m ³
January	3.03E+01	<mdl< th=""><th><mdl< th=""><th>7.28E+01</th><th>2.13E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>7.28E+01</th><th>2.13E+02</th></mdl<>	7.28E+01	2.13E+02
February	2.95E+00	<mdl< th=""><th><mdl< th=""><th>9.23E+01</th><th>2.63E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>9.23E+01</th><th>2.63E+02</th></mdl<>	9.23E+01	2.63E+02
March	<mdl< th=""><th><mdl< th=""><th>4.59E+01</th><th><mdl< th=""><th>1.22E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>4.59E+01</th><th><mdl< th=""><th>1.22E+02</th></mdl<></th></mdl<>	4.59E+01	<mdl< th=""><th>1.22E+02</th></mdl<>	1.22E+02
April	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.53E+02</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.53E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2.53E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.53E+02</th></mdl<>	2.53E+02
May	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>6.77E+01</th><th>3.21E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>6.77E+01</th><th>3.21E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>6.77E+01</th><th>3.21E+02</th></mdl<>	6.77E+01	3.21E+02
June	4.06E+00	<mdl< th=""><th><mdl< th=""><th>1.08E+02</th><th>3.05E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.08E+02</th><th>3.05E+02</th></mdl<>	1.08E+02	3.05E+02
July	1.90E+01	<mdl< th=""><th><mdl< th=""><th>1.15E+02</th><th>3.23E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.15E+02</th><th>3.23E+02</th></mdl<>	1.15E+02	3.23E+02
August	1.28E+01	<mdl< th=""><th><mdl< th=""><th>1.26E+02</th><th>3.10E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.26E+02</th><th>3.10E+02</th></mdl<>	1.26E+02	3.10E+02
September	1.87E+02	<mdl< th=""><th><mdl< th=""><th>1.85E+02</th><th>2.90E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.85E+02</th><th>2.90E+02</th></mdl<>	1.85E+02	2.90E+02
October	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.39E+02</th><th>3.02E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1.39E+02</th><th>3.02E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.39E+02</th><th>3.02E+02</th></mdl<>	1.39E+02	3.02E+02
November	7.46E+01	<mdl< th=""><th><mdl< th=""><th>2.31E+02</th><th>2.48E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>2.31E+02</th><th>2.48E+02</th></mdl<>	2.31E+02	2.48E+02
December	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.06E+02</th><th>2.33E+02</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1.06E+02</th><th>2.33E+02</th></mdl<></th></mdl<>	<mdl< th=""><th>1.06E+02</th><th>2.33E+02</th></mdl<>	1.06E+02	2.33E+02

Whatman Filters

Sample Type:Near Field (107), ambient air Year: 2024 Analysis Performed: Anions

Start Date	Chloride μg/m ³	Nitrate µg/m³	Phosphate μg/m ³	Sulfate µg/m³
01/19/24	4.17E-01	1.45E+00	9.63E-04	1.02E+00
03/01/24	3.01E-01	1.78E+00	2.77E-03	1.31E+00
03/27/24	3.12E-01	1.90E+00	2.72E-03	1.78E+00
04/26/24	3.14E-01	1.98E+00	3.94E-03	1.92E+00
05/24/24	1.54E-01	1.76E+00	3.22E-03	2.59E+00
06/19/24	1.27E-01	1.92E+00	<mdl< td=""><td>1.87E+00</td></mdl<>	1.87E+00
07/17/24	1.51E-01	2.11E+00	<mdl< td=""><td>2.07E+00</td></mdl<>	2.07E+00
08/08/24	1.66E-01	1.60E+00	3.63E-03	1.99E-03
08/30/24	2.90E-01	3.10E+00	1.71E-02	3.04E+00
10/04/24	6.18E-01	2.70E+00	6.30E-03	2.21E+00
10/25/24	9.20E-01	2.41E+00	4.37E-03	2.09E+00
11/20/24	5.51E-01	2.79E+00	2.67E-03	1.82E+00

Sample Type:Cactus Flats (108), ambient air
2024Analysis Performed:Anions

Start Date	Chloride μg/m³	Nitrate μg/m³	Phosphate µg/m ³	Sulfate µg/m³
01/19/24	2.97E-01	1.58E+00	<mdl< th=""><th>1.20E+00</th></mdl<>	1.20E+00
03/01/24	2.16E-01	1.45E+00	1.49E-03	1.31E+00
03/27/24	3.11E-01	1.77E+00	1.33E-03	1.75E+00
04/26/24	2.74E-01	2.09E-03	2.07E+00	2.63E-03
05/24/24	1.52E-01	1.87E+00	2.40E-03	2.76E+00
06/19/24	1.01E-01	1.58E+00	<mdl< th=""><th>1.46E+00</th></mdl<>	1.46E+00
07/17/24	7.09E-02	2.08E+00	<mdl< th=""><th>2.04E+00</th></mdl<>	2.04E+00
08/08/24	6.79E-02	1.36E+00	2.86E-03	1.65E+00
08/30/24	1.15E-01	2.74E+00	1.45E-02	2.80E+00
10/04/24	4.54E-01	2.32E+00	<mdl< th=""><th>2.17E+00</th></mdl<>	2.17E+00
10/25/24	1.15E-01	8.41E-01	<mdl< th=""><th>8.05E-01</th></mdl<>	8.05E-01
11/20/24	2.72E-01	2.56E+00	1.34E-03	1.70E+00

Sample Type:Near Field (107), ambient airYear:2024Analysis Performed:Cations

Start Date	Calcium μg/m³	Magnesium μg/m³	Potassium μg/m³	Sodium µg/m³
01/19/24	7.24E-01	6.65E-02	9.17E-02	2.84E-01
03/01/24	9.90E-01	6.54E-02	8.23E-02	2.43E-01
03/27/24	1.12E+00	9.49E-02	1.10E-01	3.08E-01
04/26/24	1.24E+00	2.33E-02	5.45E-02	3.04E-01
05/24/24	1.71E+00	1.96E-02	5.31E-02	4.12E-01
06/19/24	1.01E+00	6.04E-02	5.04E-02	3.35E-01
07/17/24	1.52E+00	5.90E-02	8.83E-02	2.79E-01
08/08/24	1.42E+00	6.51E-02	7.71E-02	3.64E-01
08/30/24	1.40E+00	5.07E-02	8.61E-02	2.24E-01
10/04/24	1.60E+00	9.50E-02	1.23E-01	5.26E-01
10/25/24	1.35E+00	6.82E-02	9.73E-02	5.27E-01
11/20/24	1.47E+00	8.71E-02	1.49E-01	5.19E-01

Sample Type:Cactus Flats (108), ambient airYear:2024

Analysis Performed: Cations

Start Date	Calcium µg/m ³	Magnesium µg/m³	Potassium µg/m ³	Sodium µg/m³
01/19/24	8.96E-01	4.57E-02	5.38E-02	2.24E-01
03/01/24	1.01E+00	9.52E-03	2.55E-02	1.90E-01
03/27/24	1.24E+00	7.87E-02	8.55E-02	2.83E-01
04/26/24	1.53E+00	2.11E-02	4.18E-02	2.78E-01
05/24/24	1.84E+00	9.65E-02	1.05E-01	3.79E-01
06/19/24	1.34E+00	5.85E-02	5.40E-02	2.53E-01
07/17/24	1.84E+00	5.41E-02	8.34E-02	2.15E-01
08/08/24	1.12E+00	4.40E-02	5.75E-02	1.89E-01
08/30/24	1.38E+00	4.19E-02	6.69E-02	1.16E-01
10/04/24	1.72E+00	8.40E-02	9.48E-02	4.03E-01
10/25/24	1.36E+00	5.81E-02	7.55E-02	2.39E-01
11/20/24	1.49E+00	5.75E-02	7.98E-02	2.26E-01

Drinking Water

Sample Type: Drinking Water Year: 2024

Analysis Performed: Anions

Sample Location	Chloride µg/L	Nitrate µg/L	Phosphate µg/L	Sulfate µg/L
Carlsbad (Sheep draw)	3.73E+04	4.60E+03	<mdl< th=""><th>9.26E+04</th></mdl<>	9.26E+04
Hobbs	1.19E+05	2.17E+04	<mdl< th=""><th>1.47E+05</th></mdl<>	1.47E+05
Double Eagle PRV4	3.39E+04	1.35E+04	<mdl< th=""><th>3.94E+04</th></mdl<>	3.94E+04
Loving	4.02E+04	2.03E+04	<mdl< th=""><th>1.25E+05</th></mdl<>	1.25E+05
Otis	2.31E+05	1.80E+04	<mdl< th=""><th>5.55E+05</th></mdl<>	5.55E+05
Malaga	6.46E+05	1.57E+04	<mdl< th=""><th>9.92E+05</th></mdl<>	9.92E+05

Sample Type: Drinking Water

Year: 2024

Analysis Performed: Cations

Sample Location	Calcium µg/L	Magnesium μg/L	Potassium µg/L	Sodium µg/L
Carlsbad (Sheep draw)	7.42E+04	3.00E+04	<mdl< th=""><th>2.64E+04</th></mdl<>	2.64E+04
Hobbs	1.11E+05	2.13E+04	<mdl< th=""><th>5.73E+04</th></mdl<>	5.73E+04
Double Eagle PRV4	5.22E+04	9.85E+03	3.65E+03	3.51E+04

Loving	9.01E+04	3.43E+04	<mdl< th=""><th>2.62E+04</th></mdl<>	2.62E+04
Otis	2.40E+05	6.22E+04	<mdl< th=""><th>8.79E+04</th></mdl<>	8.79E+04
Malaga	4.58E+05	1.16E+05	<mdl< th=""><th>2.06E+05</th></mdl<>	2.06E+05

Sample Type: Drinking Water Year: 2024 Analysis Performed: pН

Sample Location	pH @ 20.6°C
Carlsbad (Sheep draw)	7.99
Hobbs	7.95
Double Eagle PRV4	8.47
Loving	8.19
Otis	8.26
Malaga	8.01

Sample Type: Drinking Water Year: 2024

Analysis Performed: Total Organic Carbon

Sample	TOC
Location	mg/L

Sheep Draw	1.231
Hobbs	1.114
Double Eagle PRV-4	0.5095
Loving	0.7142
Otis	0.5344
Malaga	0.7121

Sample Type: Drinking Water Year: 2024 Analysis

onductivity

Sample Location	Conductivity mS/cm	Temperature °C
Sheep Draw (Carlsbad)	0.697	21.0
Loving	0.807	21.0
Otis	1.93	21.0
Malaga	3.81	21.0
Hobbs	0.995	21.0
PRV4 (Double Eagle)	0.496	21.0

Sample Type: Drinking Water Year: 2024 Analysis Performed: Specific gravity

Sample Location	Specific Gravity	
Sheep Draw (Carlsbad)	0.995	
Loving	0.996	
Otis	0.997	
Malaga	0.997	
Hobbs	0.996	
PRV4 (Double Eagle)	0.996	

Sample Type: Drinking Water Year: 2024 Analysis Performed: TDS/TSS

Sample Location	TDS mg/L	TSS mg/L
Sheep Draw (Carlsbad)	220.0	N.D.
Loving	400.0	N.D.
Otis	1440.0	N.D.
Malaga	3020.0	N.D.
Hobbs	620.0	N.D.
PRV4 (Double Eagle)	120.0	N.D.
N.D. = non-detect.		

Sample Type: Drinking Water Year: 2024 Analysis Performed: Metals

Metal	Carlsbad Conc μg/L	Loving Conc μg/L	Otis Conc μg/L	Malaga Conc μg/L	Hobbs Conc μg/L	Double Eagle (PRV4) Conc μg/L
Ag	7.19E-02	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<>	<mdc< td=""><td>2.00E-01</td></mdc<>	2.00E-01
Al	3.43E+00	2.04E+00	4.18E+00	6.74E+00	2.11E+00	3.55E+00
As	7.69E-01	1.72E+00	1.87E+00	2.62E+00	8.42E+00	7.82E+00
Ba	7.25E+01	3.39E+01	1.66E+01	1.34E+01	5.64E+01	1.02E+02
Be	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ca	7.44E+04	8.80E+04	2.34E+05	4.43E+05	1.13E+05	5.44E+04
Cd	5.42E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<>	1.31E-02	<mdc< td=""></mdc<>
Ce	3.10E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Со	1.35E-01	1.64E-01	4.03E-01	7.01E-01	2.01E-01	9.89E-02
Cr	1.41E+00	2.40E+00	2.12E+00	1.81E+00	1.79E+00	1.31E+00
Cu	2.63E+00	3.10E+00	5.03E+00	3.57E+00	4.72E+00	1.64E+00
Dy	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Er	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Eu	1.86E-02	8.17E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.51E-02</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.51E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>2.51E-02</td></mdc<>	2.51E-02
Fe	2.80E+02	3.32E+02	1.02E+03	1.73E+03	1.05E+03	2.34E+02
Gd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
K	1.30E+03	1.90E+03	2.86E+03	3.99E+03	2.74E+03	2.96E+03
La	4.46E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Li	7.43E+00	2.13E+01	4.32E+01	6.44E+01	3.72E+01	2.06E+01
Mg	3.47E+04	3.91E+04	7.69E+04	1.32E+05	2.71E+04	1.13E+04
Mn	4.99E-01	3.01E-02	6.79E-02	4.45E-01	1.24E+00	1.08E+00
Мо	1.36E+00	1.67E+00	3.47E+00	4.00E+00	2.72E+00	1.93E+00
Na	2.60E+04	2.58E+04	8.73E+04	1.94E+05	5.59E+04	3.48E+04
Nd	3.23E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ni	3.38E+00	3.88E+00	1.12E+01	1.85E+01	5.45E+00	2.43E+00
Ρ	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pb	3.14E-01	2.26E-01	<mdc< td=""><td>2.36E-01</td><td>1.24E+00</td><td>4.70E-01</td></mdc<>	2.36E-01	1.24E+00	4.70E-01
Pr	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sb	3.22E-02	3.41E-02	4.56E-02	4.34E-02	6.71E-02	3.43E-02
Sc	1.84E+00	2.92E+00	3.26E+00	3.17E+00	7.42E+00	4.82E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	6.29E+03	9.89E+03	1.04E+04	1.05E+04	2.60E+04	1.65E+04
Sr	3.49E+02	8.33E+02	2.91E+03	5.80E+03	1.28E+03	5.93E+02
Th	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
TI	1.09E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<>	2.13E-02	1.23E-02
U	8.22E-01	1.94E+00	3.83E+00	5.67E+00	3.77E+00	1.71E+00
V	3.79E+00	1.16E+01	1.04E+01	7.93E+00	3.16E+01	3.17E+01
Zn	8.28E+00	4.95E+00	2.66E+01	8.69E+00	3.81E+01	6.81E+00

Surface Water

Sample Type:	Surface Water
Year:	2024
Analysis Performed:	Anions

Sample	Chloride	Nitrate	Phosphate	Sulfate
Location	μg/L	μg/L	μg/L	μg/L
Hill Tank	4.54E+03	5.60E+02	5.09E+02	1.38E+04
Noya Tank	4.46E+04	<mdl< th=""><th><mdl< th=""><th>6.44E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>6.44E+03</th></mdl<>	6.44E+03
Pierce Canyon	1.69E+06	4.06E+03	<mdl< th=""><th>1.77E+06</th></mdl<>	1.77E+06
Lake Carlsbad (Shallow)	6.13E+05	4.11E+03	<mdl< th=""><th>1.04E+06</th></mdl<>	1.04E+06
Lake Carlsbad (Deep)	6.39E+05	4.11E+03	<mdl< th=""><th>1.08E+06</th></mdl<>	1.08E+06
Brantley Lake (Shallow)	5.33E+05	1.39E+03	<mdl< th=""><th>8.83E+05</th></mdl<>	8.83E+05
Brantley (Deep)	7.15E+05	1.61E+03	<mdl< th=""><th>9.96E+05</th></mdl<>	9.96E+05
Red Bluff (Shallow)	3.71E+06	<mdl< th=""><th><mdl< th=""><th>3.70E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>3.70E+06</th></mdl<>	3.70E+06
Red Bluff (Deep)	3.69E+06	<mdl< th=""><th><mdl< th=""><th>3.68E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>3.68E+06</th></mdl<>	3.68E+06

Sample Type:Surface WaterYear:2024Analysis Performed:Cations

Sample Location	Calcium µg/L	Magnesium μg/L	Potassium µg/L	Sodium µg/L
Hill Tank	6.75E+04	8.91E+03	2.44E+04	2.41E+03
Noya Tank	2.13E+05	1.55E+04	4.25E+04	1.28E+04

Pierce Canyon	5.68E+05	2.12E+05	4.16E+04	9.76E+05
Lake Carlsbad (Shallow)	3.53E+05	1.18E+05	2.19E+04	3.94E+05
Lake Carlsbad (Deep)	3.54E+05	1.19E+05	2.14E+04	3.99E+05
Brantley Lake (Shallow)	3.26E+05	7.75E+04	2.26E+04	3.23E+05
Brantley Lake (Deep)	3.65E+05	9.44E+04	2.40E+04	4.35E+05
Red Bluff (Shallow)	9.56E+05	5.65E+05	1.71E+05	2.18E+06
Red Bluff (Deep)	9.95E+05	5.62E+05	1.85E+05	2.20E+06

Sample Type: Surface Water Year: 2024 Analysis Performed: pH

Sample Location	рН @ 24°С
Hill Tank	8.782
Noya Tank	8.180
Pierce Canyon	8.338
Lake Carlsbad (Shallow)	8.22
Lake Carlsbad (Deep)	8.32
Brantley Lake (Shallow)	8.43
Brantley Lake (Deep)	8.36
Red Bluff (Shallow)	8.25
Red Bluff (Deep)	8.24

Sample Type:Surface WaterYear:2024Analysis Performed:Conductivity

Sample Location	Conductivity mS/cm	Temperature °C
Hill Tank	0.456	20.0
Noya Tank	0.533	20.3
Pierce Canyon	9.83	19.9
Lake Carlsbad (Shallow)	3.88	21.5
Lake Carlsbad (Deep)	3.94	21.5
Brantley Lake (Shallow)	3.15	19.3
Brantley Lake (Deep)	3.90	19.4
Red Bluff (Shallow)	14.55	20.3
Red Bluff (Deep)	14.70	19.9

Sample Type: Surface Water

Year:2024Analysis Performed:Specific gravity

Sample Location	SG t/4°C
Hill Tank	0.987
Noya Tank	0.980
Pierce Canyon	0.983
Lake Carlsbad (Shallow)	1.001
Lake Carlsbad (Deep)	0.999
Brantley Lake (Shallow)	1.001
Brantley (Deep)	0.998
Red Bluff (Shallow)	1.004
Red Bluff (Deep)	1.005

Sample Type: Surface Water Year: 2024 Analysis Performed: TOC

Sample	TOC
Location	mg/L
Hill Tank	14.66
Noya Tank	115.0
Pierce Canyon	5.665
Lake Carlsbad (Shallow)	1.875
Lake Carlsbad (Deep)	1.527
Brantley Lake (Shallow)	4.741
Brantley (Deep)	4.711
Red Bluff (Shallow)	10.43
Red Bluff (Deep)	10.33

Sample Type:Surface WaterYear:2024Analysis Performed:TDS/TSS

Sample	TDS	TSS
Location	mg/L	mg/L
Hill Tank	160.00	140.00
Noya Tank	460.00	520.00
Pierce Canyon	5620.00	220.00
Lake Carlsbad (Shallow)	3040.00	80.00
Lake Carlsbad (Deep)	2240.00	N.D.
Brantley Lake (Shallow)	2080.00	320.00
Brantley (Deep)	2280.00	40.00
Red Bluff (Shallow)	11840.00	N.D.
Red Bluff (Deep)	10680.00	40.00

Sample Type:Surface WaterYear:2024Analysis Performed:Metals

Metal	Hill Tank Conc	Noya Tank Conc	Pierce Canyon Conc
	μg/L	μg/L	μg/L
Ag	<mdc< td=""><td>4.32E-01</td><td><mdc< td=""></mdc<></td></mdc<>	4.32E-01	<mdc< td=""></mdc<>
Al	4.56E+02	1.68E+04	1.14E+02
As	7.34E+00	2.86E+01	<mdc< td=""></mdc<>
Ba	2.11E+02	3.04E+03	4.09E+01
Be	<mdc< td=""><td>3.21E+00</td><td><mdc< td=""></mdc<></td></mdc<>	3.21E+00	<mdc< td=""></mdc<>
Ca	6.39E+04	4.46E+05	5.39E+05
Cd	<mdc< td=""><td>1.45E+00</td><td><mdc< td=""></mdc<></td></mdc<>	1.45E+00	<mdc< td=""></mdc<>
Ce	1.93E+00	1.13E+02	5.51E-01
Co	1.17E+00	3.08E+01	1.54E+00
Cr	1.58E+00	1.35E+01	<mdc< td=""></mdc<>
Cu	1.18E+01	4.30E+01	3.05E+00
Dy	1.67E-01	1.04E+01	<mdc< td=""></mdc<>
Er	7.77E-02	4.72E+00	3.78E-02
Eu	<mdc< td=""><td>4.26E+00</td><td><mdc< td=""></mdc<></td></mdc<>	4.26E+00	<mdc< td=""></mdc<>
Fe	4.32E+02	1.19E+04	1.78E+03
Gd	2.47E-01	1.63E+01	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
K	2.15E+04	4.58E+04	1.66E+04
La	8.98E-01	4.98E+01	<mdc< td=""></mdc<>
Li	4.43E+00	2.40E+01	8.34E+01
Mg	9.69E+03	3.77E+04	2.15E+05
Mn	9.24E+01	4.88E+03	2.14E+01
Мо	9.23E-01	1.43E+00	4.02E+00

Na	2.26E+03	1.24E+04	9.31E+05
Nd	1.03E+00	6.30E+01	<mdc< td=""></mdc<>
Ni	4.79E+00	5.48E+01	2.44E+01
Р	2.76E+02	5.85E+03	<mdc< td=""></mdc<>
Pb	<mdc< td=""><td>7.41E+01</td><td><mdc< td=""></mdc<></td></mdc<>	7.41E+01	<mdc< td=""></mdc<>
Pr	2.39E-01	1.38E+01	<mdc< td=""></mdc<>
Sb	6.35E-01	8.23E-01	<mdc< td=""></mdc<>
Sc	1.73E+00	9.05E+00	1.08E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	6.56E+03	2.91E+04	4.67E+03
Sr	3.13E+02	9.98E+02	8.50E+03
Th			
TI	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
U	7.27E-01	1.49E+00	8.19E+00
V	1.77E+01	1.16E+02	5.13E+00
Zn	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>

	Brantle	ev Lake	Lake Carlsbad		Red Bluff	
	Shallow	Deep	Shallow	Deep	Shallow	Deep
Metal	Conc	Conc	Conc	Conc	Conc	Conc
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Ag	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
AĬ	1.35E+02	1.62E+02	2.48E+01	2.94E+01	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
As	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ba	1.20E+02	1.17E+02	1.62E+01	1.63E+01	8.18E+01	8.62E+01
Be	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ca	3.03E+05	3.38E+05	3.42E+05	3.39E+05	9.81E+05	9.98E+05
Cd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ce	4.96E-01	2.17E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Co	<mdc< td=""><td>6.32E-01</td><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	6.32E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Cr	6.90E+00	6.57E+00	7.72E+00	7.92E+00	3.31E+01	3.98E+01
Cu	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Dy	3.33E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Er	3.13E-01	<mdc< td=""><td>3.30E-02</td><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.30E-02	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Eu	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Fe	1.06E+03	1.24E+03	1.17E+03	1.34E+03	4.73E+03	4.11E+03
Gd	3.40E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
K	8.48E+03	8.31E+03	4.92E+03	4.92E+03	4.15E+04	4.11E+04
La	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Li	2.50E+01	3.09E+01	3.88E+01	3.90E+01	1.71E+02	1.67E+02
Mg	6.75E+04	8.44E+04	1.08E+05	1.10E+05	4.40E+05	4.45E+05
Mn	8.31E+00	1.26E+01	<mdc< td=""><td><mdc< td=""><td>4.24E+01</td><td>4.27E+01</td></mdc<></td></mdc<>	<mdc< td=""><td>4.24E+01</td><td>4.27E+01</td></mdc<>	4.24E+01	4.27E+01
Мо	3.33E+00	<mdc< td=""><td>3.18E+00</td><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.18E+00	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Na	2.97E+05	4.05E+05	3.72E+05	3.73E+05	2.09E+06	2.17E+06
Nd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ni	1.28E+01	1.43E+01	1.36E+01	1.41E+01	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Р	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pb	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pr	3.51E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sb	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sc	1.36E+00	1.34E+00	1.28E+00	1.67E+00	2.10E+00	2.18E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	5.33E+03	5.71E+03	6.60E+03	6.79E+03	5.98E+03	6.40E+03
Sr	3.78E+03	4.14E+03	4.65E+03	4.08E+03	1.36E+04	
Th	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
TI	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
U	2.92E+00	3.26E+00	3.22E+00	3.18E+00	9.39E+00	9.61E+00
V	6.17E+00	5.78E+00	6.10E+00	6.24E+00	9.95E+00	1.26E+01
Zn	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>

Surface Water

Sample Type: Surface Water Year: 2025 Analysis Performed: Anions

Sample	Chloride	Nitrate	Phosphate	Sulfate
Location	μg/L	μg/L	μg/L	μg/L
Hill Tank	2.73E+03	1.03E+03	4.66E+02	7.63E+03
Noya Tank	1.09E+03	1.71E+03	6.77E+02	1.82E+03
Pierce Canyon	1.41E+06	3.14E+03	<mdl< th=""><th>1.47E+06</th></mdl<>	1.47E+06
Lake Carlsbad (Shore)	7.04E+05	1.48E+03	<mdl< th=""><th>1.16E+06</th></mdl<>	1.16E+06
Brantley Lake (Shore)	1.33E+06	<mdl< th=""><th><mdl< th=""><th>1.42E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>1.42E+06</th></mdl<>	1.42E+06
Pecos River (Shore)	4.94E+05	2.33E+03	<mdl< th=""><th>1.11E+06</th></mdl<>	1.11E+06

Sample Type: Surface Water Year: 2025

Analysis Performed: Cations

Sample	Sodium	Magnesium	Potassium	Calcium
Location	μg/L	μg/L	μg/L	μg/L
Hill Tank	1.38E+03	3.61E+03	7.59E+03	4.93E+04
Noya Tank	3.40E+02	2.05E+03	5.38E+03	4.26E+04
Pierce Canyon	8.30E+05	1.86E+05	3.91E+04	4.98E+05
Lake Carlsbad (Shore)	4.47E+05	1.19E+05	9.52E+03	3.88E+05
Brantley Lake (Shore)	8.42E+05	1.47E+05	1.50E+04	4.96E+05
Pecos River (Shore)	4.07E+05	9.58E+04	8.08E+03	4.95E+05

Sample Type: Surface Water Year: 2025

Analysis Performed: pH

Sample Location	рН @ 25°С
Hill Tank	8.33
Noya Tank	8.41
Pierce Canyon	8.07
Lake Carlsbad (Shore)	8.21
Brantley Lake (Shore)	8.29
Pecos River (Shore)	7.58

Sample Type: Surface Water Year: 2025

Analysis Performed: Conductivity

Conductivity Sample Temperature mS/cm °C Location 0.1764 19.8 Hill Tank Noya Tank 0.1537 19.8 6.49 19.6 **Pierce Canyon** Lake Carlsbad (Shore) 4.26 19.6

Brantley Lake (Shore)	6.44	19.4
Pecos River (Shore)	3.91	19.9

Sample Type: Surface Water Year: 2025

Analysis Performed: Specific gravity

Sample Location	SG t/4°C
Hill Tank	0.995
Noya Tank	0.996
Pierce Canyon	1.001
Lake Carlsbad (Shore)	0.999
Brantley Lake (Shore)	1.000
Pecos River (Shore)	1.000

Sample Type:Surface WaterYear:2025Analysis Performed:TOC

Sample	TOC
Location	mg/L
Hill Tank	16.01
Noya Tank	16.10
Pierce Canyon	17.91
Lake Carlsbad (Shore)	17.73
Brantley Lake (Shore)	18.33
Pecos River (Shore)	12.11

Sample Type:Surface WaterYear:2025Analysis Performed:TDS/TSS

Sample	TDS	TSS
Location	mg/L	mg/L
Hill Tank	160.00	N.D.
Noya Tank	200.00	N.D.
Pierce Canyon	4760.00	N.D.
Lake Carlsbad (Shore)	2960.00	N.D.
Brantley Lake (Shore)	4680.00	N.D.
Pecos River (Shore)	2720.00	2120.00

Year: analysis Performed:

	Hill Tank	Noya Tank	Pierce Canyon
Metal	Conc	Conc	Conc
	μg/L	μg/L	μg/L
Ag	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Al	6.54E+03	7.12E+03	1.78E+03
As	2.68E+00	2.60E+00	<mdc< td=""></mdc<>
Ba	2.60E+02	2.55E+02	1.37E+02
Be	4.83E-01	5.26E-01	<mdc< td=""></mdc<>
Ca	4.51E+04	3.96E+04	4.16E+05
Cd	1.14E-01	1.16E-01	<mdc< td=""></mdc<>
Ce	1.27E+01	1.37E+01	2.58E+00
Со	4.22E+00	4.59E+00	2.17E+00
Cr	4.51E+00	4.23E+00	<mdc< td=""></mdc<>
Cu	<mdc< td=""><td>1.89E+01</td><td><mdc< td=""></mdc<></td></mdc<>	1.89E+01	<mdc< td=""></mdc<>
Dy	9.61E-01	1.08E+00	2.22E-01
Er	4.42E-01	4.95E-01	1.01E-01
Eu	3.70E-01	4.21E-01	9.55E-02
Fe	3.28E+03	3.49E+03	2.33E+03
Gd	1.50E+00	1.69E+00	3.28E-01
Hg	<mdl< td=""><td><mdl< td=""><td><mdc< td=""></mdc<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdc< td=""></mdc<></td></mdl<>	<mdc< td=""></mdc<>
ĸ	7.03E+03	6.94E+03	1.53E+04
La	5.53E+00	5.96E+00	1.07E+00
Li	7.55E+00	9.43E+00	7.70E+01
Mg	7.34E+03	7.60E+03	1.80E+05
Mn	1.71E+02	1.93E+02	1.69E+02
Мо	1.39E-01	3.00E-01	2.91E+00
Na	1.56E+03	7.99E+02	7.10E+05
Nd	6.68E+00	7.06E+00	1.40E+00
Ni	8.94E+00	8.94E+00	1.81E+01
Р	4.48E+02	5.71E+02	1.15E+02
Pb	6.48E+00	8.88E+00	<mdc< td=""></mdc<>
Pr	1.55E+00	1.64E+00	3.20E-01
Sb	1.11E-01	1.30E-01	2.07E-01
Sc	2.94E+00	3.30E+00	2.12E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	1.56E+04	1.74E+04	7.44E+03
Sr	1.39E+02	1.16E+02	6.87E+03
Th	1.60E-01	2.10E-01	<mdc< td=""></mdc<>
TI	3.34E-02	4.14E-02	<mdc< td=""></mdc<>
U	2.33E-01	2.06E-01	6.07E+00
V	1.64E+01	1.92E+01	8.11E+00
Zn	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>

	Brantle	y Lake	Lake C	arlsbad	Red	Bluff	Brantley	Lake	Pecos
	Shallow	Deen	Shallow	Deen	Shallow	Deen	Shore	Shore	Shore
Motal	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
motar							ug/L	ug/L	ug/L
Aa	μg/2	μg 2	μg/ 2	μg/ 2	μg/ 22	μg/ 2	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
AI							1.95E+02	1 71E+02	1 88E+04
As							<mdc< td=""><td><mdc< td=""><td>7.17E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>7.17E+00</td></mdc<>	7.17E+00
Ba							9.10E+01	2.14E+01	1.53E+02
Be							<mdc< td=""><td><mdc< td=""><td>1.93E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>1.93E+00</td></mdc<>	1.93E+00
Ca							4.60E+05	3.48E+05	4.73E+05
Cd							<mdc< td=""><td><mdc< td=""><td>4.16E-01</td></mdc<></td></mdc<>	<mdc< td=""><td>4.16E-01</td></mdc<>	4.16E-01
Ce							3.09E-01	3.09E-01	4.13E+01
Со							9.79E-01	7.04E-01	1.18E+01
Cr							<mdc< td=""><td><mdc< td=""><td>1.19E+01</td></mdc<></td></mdc<>	<mdc< td=""><td>1.19E+01</td></mdc<>	1.19E+01
Cu							<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Dv							<mdc< td=""><td><mdc< td=""><td>4.05E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>4.05E+00</td></mdc<>	4.05E+00
Er							<mdc< td=""><td><mdc< td=""><td>1.80E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>1.80E+00</td></mdc<>	1.80E+00
Eu							<mdc< td=""><td><mdc< td=""><td>1.39E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>1.39E+00</td></mdc<>	1.39E+00
Fe							1.39E+03	1.40E+03	1.38E+04
Gd							<mdc< td=""><td><mdc< td=""><td>6.03E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>6.03E+00</td></mdc<>	6.03E+00
Hg							<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
K							9.44E+03	5.21E+03	8.08E+03
La							1.42E-01	1.55E-01	1.77E+01
Li							5.53E+01	4.60E+01	6.58E+01
Mg							1.42E+05	1.16E+05	1.06E+05
Mn							3.71E+01	9.89E+00	1.76E+03
Мо							3.82E+00	2.91E+00	2.20E+00
Na							7.81E+05	4.12E+05	3.72E+05
Nd							<mdc< td=""><td><mdc< td=""><td>2.42E+01</td></mdc<></td></mdc<>	<mdc< td=""><td>2.42E+01</td></mdc<>	2.42E+01
Ni							1.56E+01	1.31E+01	3.71E+01
Р							<mdc< td=""><td><mdc< td=""><td>8.84E+02</td></mdc<></td></mdc<>	<mdc< td=""><td>8.84E+02</td></mdc<>	8.84E+02
Pb							<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pr							3.76E-02	3.68E-02	5.41E+00
Sb							2.06E-01	9.32E-02	1.80E-01
Sc							1.19E+00	1.63E+00	8.19E+00
Se							<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si							4.53E+03	5.79E+03	4.07E+04
Sr							7.34E+03	5.10E+03	6.32E+03
Th							<mdc< td=""><td><mdc< td=""><td>2.54E+00</td></mdc<></td></mdc<>	<mdc< td=""><td>2.54E+00</td></mdc<>	2.54E+00
TI							<mdc< td=""><td><mdc< td=""><td>7.39E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>7.39E-02</td></mdc<>	7.39E-02
U							4.51E+00	3.42E+00	6.12E+00
V							4.01E+00	5.86E+00	4.44E+01
Zn							<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>

Groundwater

Sample Type:	Ground Water
Year:	2025
Analysis Performed:	Anions

Sample Location	Chloride µg/L	Nitrate µg/L	Phosphate µg/L	Sulfate µg/L
WQSP-1	3.56E+07	<mdl< th=""><th><mdl< th=""><th>4.85E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>4.85E+06</th></mdl<>	4.85E+06
WQSP-2	3.59E+07	<mdl< th=""><th><mdl< th=""><th>5.28E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>5.28E+06</th></mdl<>	5.28E+06
WQSP-3	1.36E+08	<mdl< th=""><th><mdl< th=""><th>7.95E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>7.95E+06</th></mdl<>	7.95E+06
WQSP-4	5.94E+07	<mdl< th=""><th><mdl< th=""><th>6.75E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>6.75E+06</th></mdl<>	6.75E+06
WQSP-5	1.66E+07	<mdl< th=""><th><mdl< th=""><th>4.88E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>4.88E+06</th></mdl<>	4.88E+06
WQSP-6	5.32E+06	<mdl< th=""><th><mdl< th=""><th>4.51E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>4.51E+06</th></mdl<>	4.51E+06

Sample Type:	Ground Wat
Year:	2025
Analysis Performed:	Cations

Sample Location	Sodium µg/L	Magnesium μg/L	Potassium µg/L	Calcium µg/L
WQSP-1	2.31E+07	1.01E+06	4.12E+05	1.79E+06
WQSP-2	2.16E+07	9.74E+05	4.36E+05	1.58E+06
WQSP-3	8.39E+07	2.29E+06	1.47E+06	1.44E+06
WQSP-4	4.02E+07	1.24E+06	9.81E+05	1.80E+06
WQSP-5	1.13E+07	5.95E+05	3.76E+05	1.12E+06

WQSP-6 4.69E+06 2.01E+05 1.63E+05 7.14E+05

Sample Type:Ground WaterYear:2025Analysis Performed:pH

 Sample Location
 pH @ 23°C

 WQSP-1
 6.86

 WQSP-2
 7.05

 WQSP-3
 7.32

 WQSP-4
 7.42

 WQSP-5
 7.62

 WQSP-6
 8.02

Sample Type: Ground Water

Year:

2025

Analysis Performed: Conductivity

Sample Location	Conductivity mS/cm	Temperature °C
WQSP-1	85.4	21.7
WQSP-2	83.6	21.7
WQSP-3	198.8	18.6
WQSP-4	128.9	20.4
WQSP-5	46.8	22.6
WQSP-6	21.0	18.6

Sample Type: Ground Water

Year: 2025

Analysis Performed: Specific gravity

Sample Location	SG _{T/4°C}
WQSP-1	1.041
WQSP-2	1.044
WQSP-3	1.129
WQSP-4	1.069
WQSP-5	1.024
WQSP-6	1.007

Sample Type: Ground Water Year: 2025

Analysis Performed: TOC

Sample	TOC	
Location	mg/L	
WQSP-1	1.440	
WQSP-2	1.322	
WQSP-3	0.969	
WQSP-4	3.497	
WQSP-5	4.130	
WQSP-6	1.384	

Sample Type:Ground WaterYear:2025Analysis Performed:TDS/TSS

Sample Location	TDS mg/L	TSS mg/L
WQSP-1	66480.00	N.D.
WQSP-2	66440.00	N.D.
WQSP-3	229580.00	60.00
WQSP-4	111260.00	20.00
WQSP-5	35020.00	40.00
WQSP-6	15440.00	180.00

Internal Dosimetry Group and Public Outreach

In vivo radiobioassay measurements performed during the reporting period:

None for WIPP (no current contract), 51 for the contract radiological personnel and those working in the laboratories located at CEMRC, 9 for the public participants.

Outreach activities:

CEMRC and the Internal Dosimetry group continue to interact with the public to explain CEMRC's function and to encourage the Lie Down and Be Counted (LDBC) project's lung and whole body in-vivo radiobioassay measurements at CEMRC. CEMRC also promotes awareness of environmental monitoring and research, to the public. The following are outreach activities during the reporting period:

4/9/2025: Provided a quick tour including explanation of the principles behind the ID laboratory, demonstration of the lung and whole-body radiobioassay measurement, and handing out LDBC brochures to a LATA informal group of 4 people.

6/3/2025: Inspired by Science Summer Camp students visit to CEMRC (9:00 am – 12:00 pm) Explained CEMRC's role, mission, and laboratory activities, provided a tour of the facility and laboratoriess, demonstration of the lung and whole-body radiobioassay measurement, and handed out LDBC brochures to two groups of 20 (total 40) students aged 10 to 12 years and their teachers.

6/6/2025: Provided a detailed tour including explanation of the principles behind the ID laboratory, handing out LDBC brochure, and performing a whole-body count to a public visitor from Las Cruces.

6/21/2025: STEM Passport to Adventure at Riverwalk Recreation Center, Carlsbad NM (10:00 am -2:00 pm)

Explained CEMRC's role, mission, and laboratory activities, handed out LDBC brochures, and demonstrated simple science experiments to local families with young children; the number of families visited estimated to be between 70 to 80 (2 to 5 people per family).

Low Background Radiation Experiment (LBRE)

Key milestones and accomplishments: 1. On April 7, 2025, Jakob Plante, an NMSU Biology graduate student supported on this grant, successfully defended his MS thesis on the effect of depriving *Drosophila* of natural radiation. 2. With former graduate student Liam Goodale and postdoctoral researcher Cung Thawng, completed writing a manuscript on radiation effects on *Aedes aegypti* based on Goodale's NMSU thesis. Submitted the manuscript on May 28 to *Nature Scientific Reports* for preliminary review. Editors required that we submit our RNA Sequences and we did so and formal review began on June 20th.

In our Q1 2025 report, we presented data showing that *Drosophila* growth and development was inhibited when grown underground at WIPP deprived of surface levels of radiation. During Plante's MS Thesis oral exam, he presented an illuminating graph showing that the developmental inhibition was likely between the egg hatching stage and the production of pupae (Figure 1). The Y axis of the graph shows the extent of inhibition by growth underground compared to the surface control, and pupae production was more than 35% inhibited (red line in Figure 1). And, as discussed in the Q1 2025 report, rescuing the flies form the underground abrogated the inhibition (green line). What was illuminating about Plante's graph was the slope of the line showed that most of the inhibition occurred between the eggs and the pupae stage – that is during the larval stage. These results indicate that normal *Drosophila* development *requires* natural background radiation. We plan to confirm and expand these results in the summer of 2025.

Figure 1. The extent of inhibition by the deprivation of radiation in the underground at WIPP. Surface control development is shown as 1.0 and the underground inhibition is shown as less than 1.0.

Drosophila Larval Development Pilot Studies.

We therefore are developing techniques to test if the larval stage is the critical stage during which the lack of radiation influences development. Towards the end of carrying out an experiment at WIPP this summer on the influence of larval development, we have undertaken pilot studies to work out the methods to make this a successful experiment.

To test larval development in the second pilot study (1st pilot not shown), we demonstrated we could distinguish Larval instar stages 1, 2, and 3 based on larval size (2nd instar= 1-2 mm, 3rd instar = 3-4 mm, see **Figure 2 A** for identification of both these stages of larval development). Another critical question requiring this study was to find out if we could harvest enough RNA to perform RNA Seq Transcriptome analysis (0.5-2 μ g is needed). RNA was extracted from 2, 3, and 4 days post mating, and it was found that day 3 yielded enough RNA to do transcriptome sequencing.

B. RNA Yields from Drosophila (ug)		
<u>2 days post matin</u>	ig <u>3 days</u>	<u>4 days</u>
Rep a 0.23	0.9	6.7
b 0.20	3.8	22.3

Figure 2. **A.** Larval developmental and **B.** RNA extraction monitored for up to 4 days postmating. Ruler markings represent 1 mm.

The other project goal in the 2025 LBRE proposed work is to document biosignatures for life in WIPP's 250 million-year-old halite deposit. Emma Soto, who had been hired on the LBRE project to work on this sub-project, was let go in February due to the ending of the previous five-year grant. She has been volunteering in the laboratory, setting up our new Clean Room for halite extraction work in the NMSU Biology Department. **Figure 3** shows Emma in the laboratory on June 12, 2025, with the WIPP inclusion fluid she extracted. When we are doing these extractions under sterile conditions, we will use quantitative PCR to amplify any nucleic acids present, document life-forms by Electron Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), and grow inclusion fluid under both aerobic and anaerobic conditions.

Figure 3. A. NMSU undergraduate Emma Soto with a sample of WIPP inclusion fluid she extracted. **B.** A closer view of the approximate 75 μ L of extracted inclusion fluid.