Quarterly Report

Calendar Year 2024 – Fourth Quarter, October 1 – December 31, 2024

Prepared by:

Carlsbad Environmental Monitoring & Research Center under a financial assistance grant from U.S. Department of Energy Carlsbad Field Office (CBFO) Award No. DE-EM0005195

Submitted to:

U.S. Department of Energy Carlsbad Field Office

January 2025

Field Programs - Radiation Safety Group

WIPP Underground Effluent Monitoring (Station A and Station B)

From October 1st to December 31st, a total of 56 filters from the primary skid at Station A, of which 44 were sample filters, 6 were trip blanks and 6 were filter blanks, were collected. In addition, 34 filters were collected from the backup skid at Station A (24 sample filters, 5 trip blank filters and 5 filter blanks). One hundred and fourteen filters were collected from the primary skid at Station B, (91 sample filters, 11 trip blanks and 12 filter blanks). One hundred and fourteen filters user collected from the backup (91 sample filters, 11 trip blanks and 12 filter blanks).

All 56 filters from the primary skid at Station A have been processed (gravimetrics, sample flow volume, and mass concentration have been calculated in the Field Programs (FP) data package) and transferred to the Radiochemistry group (RC). All 34 of the Station A backup filters have been processed and transferred to the Environmental Chemistry group (EC). All 114 filters from the primary Station B skid have been processed and transferred to RC. All 114 of the Station B backup filters were transferred to EC.

Ambient Air Sampling

From October 1st to December 31st, 18 ambient air particulate filters were collected from the six perimeter and regional continuous sampling stations (On-Site, Near Field, Cactus Flats, WIPP East, Carlsbad, and Loving) using a high-volume sampler (HiVol). All filters have been processed (gravimetrics, total air flow values, and notes of any irregularities) by FP and transferred to RC.

Subtask - Non-Radiological analyses

From October 1st to December 31st, 6 Whatman-41 filters and 3 trip blank filters were collected, from the 2 sampling sites (Near Field and Cactus Flats) using a high-volume sampler. All filters have been processed (total air flow values and notes of any irregularities) by FP and transferred to EC.

Vegetation sampling

From October 1st to December 31st, 6 vegetation samples (5 samples and 1 duplicate) were collected from five of the six perimeter and regional continuous sampling stations (Near Field, Cactus Flats, WIPP East, Carlsbad, and Loving.) Vegetation was not collected from the on-site sampling station because the station is surrounded mostly by concrete and infertile soil. Vegetation samples are currently undergoing processing so that they can be transferred to the RC group.

Surface Water Monitoring

From October 1st to December 31st, 9 surface water samples were collected, out of those 1 is a trip blank. All samples were transferred to RC and EC.

Drinking Water Monitoring

No activity to report this quarter.

Sediment Monitoring

From October 1st to December 31st, 4 sediment samples were collected. Sediment samples are currently undergoing processing so they can be transferred to the RC group.

Nuclear Materials Management and Safeguards

From October 1st to December 31st, the Radiation Safety group (RS) has collected and bulked radioactive waste from NMSU, LANL, and the WIPP Labs groups working in the CEMRC facility. Radiation Safety (RS) has performed monthly surveys of all laboratories where radioactive materials are present, including smears and dose rate measurements. All fume hoods are face-velocity checked quarterly. The date of the last inspection was December 18, 2024. Several survey instruments were sent to Ludlum Corporation for calibration. One flow meter was sent to Omega Engineering for calibration.

Radiochemistry Group

WIPP Underground Effluent Monitoring (Station A and Station B)

Gross alpha and beta activities on individual filters collected from station A, taken immediately before, and Station B, taken after the high-efficiency particulate air (HEPA) filtration, were counted using a low-background gas proportional counter (Protean Instruments) for 1200 minutes (20 hours). The analysis of all filters from Station A until it was permanently secured on November 14, 2024, in preparation for decommissioning, and Station B through the second week of January 2025 has been completed. The complete results for gross alpha and gross beta counts on FAS filters from Station A and Station B through December 2024 were submitted to CBFO on January 14, 2025.

Between October 1st and December 31st, 2024, the following types of environmental samples were processed and analyzed:

- Alpha radiation emitting isotopes (²⁴¹Am, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²³⁴U, ²³⁵U, and ²³⁸U)
 36 Fixed Air Sampler (FAS) Station A samples from 2024
- Beta radiation emitting isotope (⁹⁰Sr)
 - 12 Fixed Air Sampler (FAS) Station A samples from 2024
- Gamma radiation emitting isotopes (60 Co, 137 Cs, and 40 K)
 - o 36 Fixed Air Sampler (FAS) Station A samples from 2024

Characteristic results are included in the following pages.

[PS 0		
	Sample Description: Spectrum File: Batch Identification: Sample Identification: Procedure Description:	C:\Canberra\ApexAlpha\Root\Data\0000061037.cnf STA01-03_Am 24A0101_Am Am - 5 Days
	Detector Name: Env. Background:	2-02 System Bkgd 27843
	Sample Size: Sample Date/Time: Acquisition Date/Time: Acquisition Live Time: Acquisition Real Time:	1.0000E+00 +/- 0.0000E+00 unit 11/6/2024 10:28:07 AM 11/6/2024 10:28:07 AM 7200.0 minutes 7200.0 minutes
	Tracer Certificate: Tracer Quantity: Counting Efficiency: Chem. Rec. Factor (%):	1322-Am-243-2 0.044 mL 0.1827 +/- 0.0037 on 7/21/2024 3:36:46 PM 99.01 +/- 3.4217

			PEAK	AREA R	EPORT		
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)	
AM-241 AM-243	т	5.471 5.259	271.00 1314.00	12.59 5.53	10.00 4.00	25.0 31.5	

		NUCLIDE ANALYSIS RE	SULTS
Nuclide	Energy (keV)	Activity	MDA (Bg /unit)
	(((Eq / unite /
AM-241 AM-243	5479.10* 5270.00*	3.470E-03 +/- 4.784E-04 1.688E-02 +/- 9.491E-04	3.009E-04 +/- 1.692E-05 2.037E-04 +/- 1.146E-05

[PS 0	
Sample Description: Spectrum File: Batch Identification: Sample Identification: Procedure Description:	C:\Canberra\ApexAlpha\Root\Data\0000061054.cnf STA01-03_Am 24A0102_Am Am - 5 Days
Detector Name: Env. Background:	2-03 System Bkgd 27844
Sample Size: Sample Date/Time: Acquisition Date/Time: Acquisition Live Time: Acquisition Real Time:	1.0000E+00 +/- 0.0000E+00 unit 11/6/2024 10:28:08 AM 11/6/2024 10:28:08 AM 7200.0 minutes 7200.0 minutes
Tracer Certificate: Tracer Quantity: Counting Efficiency: Chem. Rec. Factor (%):	1322-Am-243-2 0.044 mL 0.2131 +/- 0.0042 on 7/21/2024 3:36:47 PM 85.60 +/- 2.9175

			PEAK	AREA R	EPORT		
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)	
AM-241 AM-243	T	5.469 5.257	642.00 1338.00	8.15 5.50	21.00 8.00	30.6 26.7	

		NUCLIDE ANALYSIS R	RESULTS	
Nuclide	Energy (keV)	Activity (Bq /unit)	MDA (Bq /unit)	
AM-241 AM-243	5479.10* 5270.00*	8.152E-03 +/- 8.055E-04 1.704E-02 +/- 9.529E-04	4.171E-04 +/- 2.332E-05 2.715E-04 +/- 1.518E-05	

Sample Description: Spectrum File: Batch Identification: Sample Identification: Procedure Description:	C:\Canberra\ApexAlpha\Root\Data\0000061424.cnf STA07-09_Pu 24A0701_Pu Pu - 5 days
Detector Name:	5-07
Env. Background:	System Bkgd 59129
Sample Size:	1.0000E+00 +/- 0.0000E+00 unit
Sample Date/Time:	11/20/2024 2:09:03 PM
Acquisition Date/Time:	11/20/2024 2:09:03 PM
Acquisition Live Time:	7200.0 minutes
Acquisition Real Time:	7200.0 minutes
Tracer Certificate:	450-Pu-242
Tracer Quantity:	0.063 mL
Counting Efficiency:	0.1988 +/- 0.0039 on 7/19/2024 9:36:39 PM
Chem. Rec. Factor (%):	89.50 +/- 3.0475

			PEAK	AREA R	EPORT		
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)	
PU-238 PU-239 PU-242	т	5.473 5.130 4.874	386.00 64.00 1315.00	10.59 26.88 5.52	16.00 5.00 2.00	26.5 4.3 28.7	

		NUCLIDE ANALYSIS RE	SULTS
	Energy	Activity	MDA
Nuclide	(keV)	(Bq /unit)	(Bq /unit)
PU-238	5487.10*	5.028E-03 +/- 6.018E-04	3.779E-04 +/- 2.105E-05
PU-239	5147.70*	8.336E-04 +/- 2.289E-04	2.268E-04 +/- 1.264E-05
PU-242	4890.70*	1.704E-02 +/- 9.494E-04	1.557E-04 +/- 8.671E-06

[PS 0	
Sample Description: Spectrum File: Batch Identification: Sample Identification: Procedure Description:	C:\Canberra\ApexAlpha\Root\Data\0000061422.cnf STA07-09_Pu 24A0702_Pu Pu - 5 days
Detector Name:	5-08
Env. Background:	System Bkgd 59130
Sample Size:	1.0000E+00 +/- 0.0000E+00 unit
Sample Date/Time:	11/20/2024 2:09:04 PM
Acquisition Date/Time:	11/20/2024 2:09:04 PM
Acquisition Live Time:	7200.0 minutes
Acquisition Real Time:	7200.0 minutes
Tracer Certificate:	450-Pu-242
Tracer Quantity:	0.064 mL
Counting Efficiency:	0.2066 +/- 0.0041 on 7/19/2024 9:36:38 PM
Chem. Rec. Factor (%):	89.63 +/- 3.0082

			PEAK	AREA R	EPORT		
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)	
PU-238 PU-239 PU-242	 Т	5.479 5.139 4.873	355.00 65.00 1389.00	11.31 31.83 5.38	24.00 21.00 3.00	20.8 14.3 28.5	

		NUCLIDE ANALYSIS RE	SULTS
	Energy	Activity	MDA
Nuclide	(keV)	(Bq /unit)	(Bq /unit)
PU-238 PU-239	5487.10* 5147.70*	4.442E-03 +/- 5.573E-04 8.134E-04 +/- 2.626E-04	4.371E-04 +/- 2.371E-05 4.110E-04 +/- 2.230E-05
PU-242	4890.70*	1.730E-02 +/- 9.384E-04	1.756E-04 +/- 9.526E-06

[PS 0	
Sample Description: Spectrum File: Batch Identification: Sample Identification: Procedure Description:	C:\Canberra\ApexAlpha\Root\Data\0000061456.cnf STA07-09_U 24A0701_U Uranium
Detector Name:	2-01
Env. Background:	System Bkgd 27842
Sample Size:	1.0000E+00 +/- 0.0000E+00 unit
Sample Date/Time:	11/22/2024 12:59:09 PM
Acquisition Date/Time:	11/22/2024 12:59:09 PM
Acquisition Live Time:	7200.0 minutes
Acquisition Real Time:	7200.0 minutes
Tracer Certificate:	1320_U232
Tracer Quantity:	0.040 mL
Counting Efficiency:	0.2103 +/- 0.0041 on 7/21/2024 4:22:51 AM
Chem. Rec. Factor (%):	70.58 +/- 2.6213

			PEAK	AREA H	REPORT		
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)	
U-232 U-234 U-235 U-238	T	5.287 4.740 4.405 4.156	1058.00 191.00 1.00 160.00	6.21 14.99 447.21 16.68	11.00 7.00 2.00 9.00	41.1 30.9 3.4 26.5	

		NUCLIDE ANALYSIS RE	SULTS
Nuclide	Energy	Activity	MDA
	(keV)	(Bq /unit)	(Bq /unit)
U-232	5302.50*	1.653E-02 +/- 1.040E-03	3.832E-04 +/- 2.411E-05
U-234	4761.50*	2.985E-03 +/- 4.853E-04	3.143E-04 +/- 1.977E-05
U-235	4385.50*	1.928E-05 +/- 8.623E-05	2.315E-04 +/- 1.457E-05
U-238	4184.40*	2.490E-03 +/- 4.438E-04	3.492E-04 +/- 2.197E-05

[PS 0		
	Sample Description:	
	Spectrum File:	C:\Canberra\ApexAlpha\Root\Data\0000061457.cnf
	Batch Identification:	STA07-09 U
	Sample Identification:	24A0801_U
	Procedure Description:	Uranium
	Detector Name:	2-05
	Env. Background:	System Bkgd 27846
	Sample Size.	1 0000E+00 + (- 0 0000E+00 unit)
	Sample Size:	11/22/2024 12.59.16 DM
	Acquisition Date/Time.	11/22/2024 12.59.10 PM 11/22/2024 12.59.16 PM
	Acquisition Live Time:	7200 0 minutes
	Acquisition Real Time:	7200.0 minutes
	noquibición nour inno.	, Loolo MERICOS
	Tracer Certificate:	1320 U232
	Tracer Quantity:	0.048 mL
	Counting Efficiency:	0.1885 +/- 0.0038 on 7/21/2024 7:39:21 PM
	Chem. Rec. Factor (%):	71.83 +/- 2.6037

			PEAK	EPORT			
Nuclide		Energy (MeV)	Net Pk Area	Pk Area Error %	Ambient Backgnd	FWHM (keV)	
U-232 U-234 U-235 U-238	Т	5.289 4.737 4.396 4.160	1151.00 180.00 6.00 162.00	5.96 15.48 124.72 17.20	12.00 7.00 4.00 16.00	28.1 28.7 3.4 12.4	

		NUCLIDE ANALYSIS RE	CSULTS			
	Energy	Activity	MDA			
Nuclide	(keV)	(Bq /unit)	(Bq /unit)			
U-232	5302.50*	1.971E-02 +/- 1.191E-03	4.366E-04 +/- 2.637E-05			
U-234	4761.50*	3.083E-03 +/- 5.122E-04	3.444E-04 +/- 2.080E-05			
U-235	4385.50*	1.268E-04 +/- 1.583E-04	3.352E-04 +/- 2.024E-05			
U-238	4184.40*	2.763E-03 +/- 5.035E-04	4.948E-04 +/- 2.989E-05			

CEMRC Gross Alpha-Beta Analysis

 Batch ID
 FASA_SR_JAN_MAR_24

 Count Method
 FAS Gross Alpha Beta

Sample ID	Count Began	Addr	Count Time	Alpha counts	Beta counts	
FASA_SR_FEB_24_1ST	11/12/2024 6:45:05 PM	7	1,200.0 minutes	81.0	930.0	
FASA_SR_FEB_24_2ND	11/12/2024 6:45:29 PM	9	1,200.0 minutes	65.0	675.0	
FASA_SR_FEB_24_3RD	11/12/2024 6:45:51 PM	10	1,200.0 minutes	76.0	592.0	
FASA_SR_FEB_24_4TH	11/12/2024 6:46:10 PM	11	1,200.0 minutes	162.0	999.0	
FASA_SR_JAN_24_1ST	11/12/2024 6:43:14 PM	2	1,200.0 minutes	105.0	818.0	
FASA_SR_JAN_24_2ND	11/12/2024 6:43:43 PM	3	1,200.0 minutes	97.0	703.0	
FASA_SR_JAN_24_3RD	11/12/2024 6:44:17 PM	4	1,200.0 minutes	77.0	996.0	
FASA_SR_JAN_24_4TH	11/12/2024 6:44:42 PM	5	1,200.0 minutes	64.0	853.0	
FASA_SR_JAN_MAR_24_BLANK	11/12/2024 6:42:36 PM	0	1,200.0 minutes	102.0	944.0	
FASA_SR_JAN_MAR_24_LCS	11/12/2024 6:42:54 PM	1	1,200.0 minutes	108.0	3,510.0	

Protean Instrument Corporation

Vista 2000

Report 15.0

CEMRC Gross Alpha-Beta Analysis

 Batch ID
 FASA_SR_JAN_MAR_24

 Count Method
 FAS Gross Alpha Beta

Sample ID	Count Began	Addr	Count Time	Alpha counts	Beta counts
FASA_SR_MAR_24_1ST	11/12/2024 6:46:32 PM	12	1,200.0 minutes	154.0	1,193.0
FASA_SR_MAR_24_2ND	11/12/2024 6:46:50 PM	13	1,200.0 minutes	119.0	1,183.0
FASA_SR_MAR_24_3RD	11/12/2024 6:47:07 PM	14	1,200.0 minutes	129.0	950.0
FASA_SR_MAR_24_4TH	11/12/2024 6:47:28 PM	15	1,200.0 minutes	145.0	1,033.0

Protean Instrument Corporation

Vista 2000

Report 15.0

Air Filter Sample Activity Report

Batch ID FASA_SR_JAN_MAR_24

Count Method FAS Gross Alpha Beta

Sample ID FASA_SR_FEB_24_1ST

Flow Time Flow Rate On 1/1/1900 0.00 LPM Off 1/1/1900 0.00 LPM				LPM	Bkg Time 1,200.0 minut Total Flow Time 0.0 minut Total Sampled Volume 1.0000 e+000 \$		inutes inutes C 000 Sample C	Count Time 1,200.0 minutes utes Count Began 11/12/2024 6:45:05 PM Sample Count Ended 11/13/2024 2:46:17 PM		
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Conce Bo	entration	% of DAC	DAC-Hrs
Alpha	1.000	0.066	0.068	0.00	2.5988 e-003	0.0000 e+000	1.1795 e-004 ±	7.4600 e-004	0.000	0.000
sd		0.007	0.008	0.04	5		7.4600 e-004			
Beta	1.000	0.665	0.775	0.28	0 4.7529 e-003	0.0000 e+000	4.6700 e-003 ±	1.4745 e-003	0.000	0.000
sd		0.024	0.025	0.08	8		1.4745 e-003			

Sample ID FASA_SR_FEB_24_2ND

Flow Time Flow Rate On 1/1/1900 0.00 LF		Rate	Bkg T Total Flow T	Time 1,200.0 m Time 0.0 m	ninutes ninutes C	Count Time 1,2 Count Began 11/12	200.0 minutes 2/2024 6:45:29	PM		
Off	1/1/1900		0.00	LPM	Total Sampled Vol	ume 1.0000 e+0	1.0000 e+000 Sample Count Ended 11/		3/2024 2:46:43	PM
	Factor	Bkg cpm	Gross cpm	Net MDC DAC Net Co dpm Bq Bq		Net Conc B	entration q	% of DAC	DAC-Hrs	
Alpha	1.000	0.040	0.054	0.0	1.9786 e-003	0.0000 e+000	9.6254 e-004 :	£ 6.0217 e-004	0.000	0.000
sd		0.006	0.007	0.0	36		6.0217 e-004			
Beta	1.000	0.380	0.563	0.4	58 3.5761 e-003	0.0000 e+000	7.6269 e-003 :	± 1.1820 e-003	0.000	0.000
sd		0.018	0.022	0.0	71		1.1820 e-003			

Sample ID FASA_SR_FEB_24_3RD

Addr: 10

Addr: 7

Addr: 9

Flow Time On 1/1/1900 Off 1/1/1900		Flow F 0.00 0.00	Rate) LPM) LPM	Bkg T Total Flow T Total Sampled Volu	ime 1,200.0 m ime 0.0 m ime 1.0000 e+0	inutes inutes 000 Sample	Count Time 1,200.0 min Count Began 11/12/2024 6: Count Ended 11/13/2024 2:		PM PM	
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Conc E	entration Iq	% of DAC	DAC-Hrs
Alpha	1.000	0.043	0.063	0.08	2.0880 e-003	0.0000 e+000	1.3820 e-003	± 6.5203 e-004	0.000	0.000
sd		0.006	0.007	0.03	9		6.5203 e-004			
Beta	1.000	0.350	0.493	0.35	6 3.4255 e-003	0.0000 e+000	5.9329 e-003	± 1.1146 e-003	3 0.000	0.000
sd		0.017	0.020	0.06	57		1.1146 e-003			

Protean Instrument Corporation

Vista 2000

Report 14.0

Air Filter Sample Activity Report

Batch ID FASA_SR_JAN_MAR_24

Count Method FAS Gross Alpha Beta

Sample ID FASA_SR_FEB_24_4TH

	Flow Time	9	Flow R	ate	Bkg T	ime 1,200.0 m	inutes	Count Time 1,	200.C minutes	
On	1/1/1900		0.00	LPM	Total Flow T	ime 0.0 m	0.0 minutes Count Began 11/		2/2024 6:46:10	PM
Off	Off 1/1/1900 0.00 LPM				Total Sampled Volume 1.0000 e+000 Sample		000 Sample	Count Ended 11/13/2024 2:47:27 PM		
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Con	centration Bq	% of DAC	DAC-Hrs
Alpha	1.000	0.126	0.135	0.03	37 3.3769 e-003	0.0000 e+000	6.2029 e-004	± 9.9772 e-004	0.000	0.000
sd		0.010	0.011	0.06	50		9.9772 e-004			
Beta	1.000	0.610	0.833	0.55	50 4.4307 e-003	0.0000 e+000	9.1637 e-003	± 1.4387 e-003	0.000	0.000
sd		0.023	0.026	0.08	36		1.4387 e-003			

Sample ID FASA_SR_JAN_24_1ST

Flow Time On 1/1/1900 Off 1/1/1900			Flow F 0.00 0.00	Rate LPM LPM	Bkg T Total Flow T Total Sampled Volu	ime 1,200.0 m ime 0.0 m ime 1.0000 e+0	inutes inutes 0 000 Sample 0	Count Time 1,200.0 minutes Count Began 11/12/2024 6:43:14 PM Count Ended 11/13/2024 2:44:29 PM			
	Bkg Gross Factor cpm cpm		Net dpm	MDC Bq	DAC Bq	Net Concentration Bq		% of DAC	DAC-Hrs		
Alpha	1.000	0.060	0.088	0.11	18 2.5117 e-003	0.0000 e+000	1.9646 e-003 :	£ 7.9295 e-004	0.000	0.000	
sd		0.007	0.009	0.04	48		7.9295 e-004				
Beta	1.000	0.478	0.682	0.51	10 4.0124 e-003	0.0000 e+000	8.5007 e-003 :	1.3163 e-003	0.000	0.000	
sd		0.020	0.024	0.07	79		1.3163 e-003				

Sample ID FASA_SR_JAN_24_2ND

Bkg Time 1,200.0 minutes Count Time 1,200.0 minutes Flow Time Flow Rate **Total Flow Time** Count Began 11/12/2024 6:43:43 PM **On** 1/1/1900 0.00 LPM 0.0 minutes Off 1/1/1900 0.00 LPM Total Sampled Volume 1.0000 e+000 Sample Count Ended 11/13/2024 2:44:57 PM **Net Concentration** Bkg Gross Net MDC DAC % of DAC DAC-Hrs Factor cpm cpm dpm Bq Bq Bq 1.000 0.061 0.081 0.083 2.4553 e-003 0.0000 e+000 1.3877 e-003 ± 7.5440 e-004 0.000 0.000 Alpha 0.007 0.008 0.045 7.5440 e-004 sd 0.253 4.0730 e-003 0.0000 e+000 4.2091 e-003 ± 1.2718 e-003 0.000 1.000 0.485 0.586 0.000 Beta sd 0.020 0.022 0.076 1.2718 e-003

Protean Instrument Corporation

Report 14.0

Addr: 11

Addr: 2

Addr: 3

Air Filter Sample Activity Report

Batch ID FASA_SR_JAN_MAR_24

Count Method FAS Gross Alpha Beta

Sample ID FASA_SR_JAN_24_3RD

	Flow Time Flow Rate				Bkg Time 1,200.0 minutes			Count Time 1,	200.0 minutes	
On	On 1/1/1900 0.00 LPM			LPM	Total Flow Time 0.0 minutes			Count Began 11/12/2024 6:44:17 PM		
Off 1/1/1900			0.00	LPM	Total Sampled Volu	1.0000 e+0	000 Sample	Count Ended 11/1	200.0 minutes 2/2024 6:44:17 PM 3/2024 2:45:25 PM % of DAC DAC-Hrs 0.000 0.000	
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Concentration Bq		% of DAC	DAC-Hrs
Alpha	1.000	0.052	0.064	0.05	2 2.2846 e-003	0.0000 e+000	8.7096 e-004	± 6.8478 e-004	0.000	0.000
sd		0.007	0.007	0.04	1		6.8478 e-004			
Beta	1.000	0.750	0.830	0.19	5 4.8942 e-003	0.0000 e+000	3.2480 e-003	± 1.4988 e-003	0.000	0.000
sd		0.025	0.026	0.09	0		1.4988 e-003			

Sample ID FASA_SR_JAN_24_4TH

Flow Time On 1/1/1900 Off 1/1/1900			Flow F 0.00 0.00	Rate LPM LPM	Bkg T Total Flow T Total Sampled Volu	Time 1,200.0 m Time 0.0 m ume 1.0000 e+	ninutes ninutes 0 000 Sample 0	Count Time 1,200.0 minutes Count Began 11/12/2024 6:44:42 PM Count Ended 11/13/2024 2:45:51 PM		
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Conc B	entration q	% of DAC	DAC-Hrs
Alpha	1.000	0.034	0.053	0.0	081 1.9169 e-003	0.0000 e+000	1.3565 e-003 :	£ 6.0491 e-004	0.000	0.000
sd		0.005	0.007	0.0	036		6.0491 e-004			
Beta	1.000	0.591	0.711	0.3	4.4605 e-003	0.0000 e+000	5.0027 e-003 :	± 1.3941 e-003	0.000	0.000
sd		0.022	0.024	0.0	084		1.3941 e-003			

Sample ID FASA_SR_JAN_MAR_24_BLANK

Addr: 0

Addr: 4

Addr. 5

Flow Time On 1/1/1900 Off 1/1/1900			Flow F 0.00 0.00	LPM LPM	Bkg T Total Flow T Total Sampled Volu	ime 1,200.0 m ime 0.0 m ime 1.0000 e+(ninutes ninutes 000 Sample	Count Time 1,200.0 minutes Count Began 11/12/2024 6:42:36 PM Count Ended 11/13/2024 2:43:48 PM		
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Cone E	centration Bq	% of DAC	DAC-Hrs
Alpha	1.000	0.062	0.085	0.1	00 2.5441 e-003	0.0000 e+000	1.6669 e-003	± 7.9045 e-004	ა.000	0.000
sd		0.007	0.008	0.0	47		7.9045 e-004			
Beta	1.000	0.583	0.787	0.5	10 4.4361 e-003	0.0000 e+000	8.5046 e-003	± 1.4339 e-003	0.000	0.000
sd		0.022	0.026	0.0	86		1.4339 e-003			

Protean Instrument Corporation

Report 14.0

Air Filter Sample Activity Report

Batch ID FASA_SR_JAN_MAR_24

Count Method FAS Gross Alpha Beta

Sample ID FASA_SR_JAN_MAR_24_LCS Addr: 1 Flow Time Bkg Time 1,200.0 minutes Count Time 1,200.0 minutes Flow Rate On 1/1/1900 0.00 LPM **Total Flow Time** 0.0 minutes Count Began 11/12/2024 6:42:54 PM Off 1/1/1900 0.00 LPM Total Sampled Volume 1.0000 e+000 Sample Count Ended 11/13/2024 2:44:12 PM MDC DAC Net **Net Concentration** Bkg Gross Factor Bq Bq Bq % of DAC DAC-Hrs cpm cpm dpm 1.2507 e-003 ± 8.3205 e-004 1.000 0.073 2.7461 e-003 0.0000 e+000 0.000 0.000 Alpha 0.090 0.075 0.050 8.3205 e-004 sd 0.008 0.009 4.4270 e-003 9.9231 e-002 ± 2.6378 e-003 0.580 2.925 5.954 0.0000 e+000 0.000 0.000 Beta 1.000 0.022 0.049 0.158 2.6378 e-003 sd

Sample ID FASA_SR_MAR_24_1ST

Flow Time On 1/1/1900 Off 1/1/1900			Flow R 0.00 0.00	Rate LPM LPM	Bkg T Total Flow T Total Sampled Volu	ime 1,200.0 m ime 0.0 m ume 1.0000 e+0	inutes Count Time inutes Count Began 1 000 Sample Count Ended 1	1,200.0 minutes 1/12/2024 6:46:32 1/13/2024 2:47:50	PM
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Concentration Bq	% of DAC	DAC-Hrs
Alpha	1.000	0.098	0.128	0.13	31 3.1346 e-003	0.0000 e+000	2.1868 e-003 ± 9.7386 e-004	4 0.000	0.000
sd		0.009	0.010	0.05	58		9.7386 e-004		
Beta	1.000	0.689	0.994	0.76	69 4.8318 e-003	0.0000 e+000	1.2815 e-002 ± 1.5991 e-003	3 0.000	0.000
sd		0.024 0.029 0.0		0.09	96		1.5991 e-003		

Sample ID FASA_SR_MAR_24_2ND

Flow Time Flow Rate Bkg Time 1,200.0 minutes Count Time 1,200.0 minutes On 1/1/1900 0.00 LPM **Total Flow Time** Count Began 11/12/2024 6:46:50 PM 0.0 minutes **Off** 1/1/1900 0.00 LPM **Total Sampled Volume** 1.0000 e+000 Sample Count Ended 11/13/2024 2:48:08 PM Bkg Gross Net MDC DAC **Net Concentration** Factor % of DAC DAC-Hrs cpm cpm dpm Ba Bq Bq Alpha 1.000 0.087 0.099 0.053 2.9569 e-003 0.0000 e+000 8.8427 e-004 ± 8.8050 e-004 0.000 0.000 0.008 0.009 0.053 8.8050 e-004 sd Beta 1.000 0.669 0.986 0.804 4.7626 e-003 0.0000 e+000 1.3393 e-002 ± 1.5862 e-003 0.000 0.000 1.5862 e-003 0.029 0.095 sd 0.024

Protean Instrument Corporation

Vista 2000

Report 14.0

Addr: 12

Addr: 13

Alpha/Beta Count Results Air Filter Sample Activity Report

Batch ID FASA_SR_JAN_MAR_24

Count Method FAS Gross Alpha Beta

Sample ID FASA_SR_MAR_24_3RD

	Flow Time	9	Flow F	Rate	Bkg T	ime 1,200.0 m	inutes	Count Time 1,	200.0 minutes	
On 1	On 1/1/1900 0.00			LPM	Total Flow Time 0.0 minutes Count Began 11/12/2024 6:47:					PM
Off 1/1/1900			0.00	LPM T	otal Sampled Volu	1.0000 e+0	000 Sample C	ount Ended 11/1	3/2024 2:48:26	PM
	Factor	Bkg cpm	Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Concentration Bq		% of DAC	DAC-Hrs
Alpha	1.000	0.068	0.108	0.169	2.6139 e-003	0.0000 e+000	2.8141 e-003 ±	8.5135 e-004	0.000	0.000
sd		0.008	0.009	0.051			8.5135 e-004			
Beta	1.000	0.593	0.792	0.497	4.4929 e-003	0.0000 e+000	8.2874 e-003 ±	1.4487 e-003	0.000	0.000
sd		0.022	0.026	0.087			1.4487 e-003			

Sample ID FASA_SR_MAR_24_4TH

Flow Time On 1/1/1900			Flow R	late LPM	Bkg Time 1,200.0 minutes Count Time 1,20 Total Flow Time 0.0 minutes Count Began 11/12/			200.0 <mark>minutes</mark> 2/2024 6:47:28	PM			
Off 1/1/1900			0.00	LPM	Total Sampled Volu	ume 1.0000 e+	000 Sample	Count Ended 11/13	t Ended 11/13/2024 2:48:43 PM			
Bkg Factor cpm		Gross cpm	Net dpm	MDC Bq	DAC Bq	Net Concentration Bq		% of DAC	DAC-Hrs			
Alpha	1.000	0.080	0.121	0.1	72 2.8280 e-003	0.0000 e+000	2.8691 e-003	± 9.1070 e-004	0.000	0.000		
sd		0.008	0.010	0.0	55		9.1070 e-004					
Beta	1.000	0.681	0.861	0.4	47 4.7970 e-003	0.0000 e+000	7.4498 e-003	± 1.5241 e-003	0.000	0.000		
sd		0.024 0.027 0		0.0	91		1.5241 e-003					

Addr: 14

Addr: 15

Reviewed by: ************************************							
CEMRC GAMMA SPECTRUM ANALYSIS							
Sample ID : FASA240101 Sample Description : FASA240101 :							
Calibration ID : Background ID :							
Sample Collection Date : 1/12/2024 12:00:00 PM Count Start Date : 11/12/2024 10:00:05 AM							
Sample Aliquot : 1.00000E+00 Aliquot Unc. : 0.00000E+00 Aliquot Unit : Unit							
Live Time (sec) : 172800 Real Time (sec) : 172814							
Energy Calibration Used Done On : 10/1/2024 Efficiency Calibration Used Done On : 11/16/2023 Efficiency ID : DET03_70mlEff_23							
<pre>%Random Unc. : 0.0 %Systematic Unc. : 0.0</pre>							

Nuclide Energy Eff% UncEff% Abun% UncAbn% HL(d) UncHL(d) Conc(Bq/unit) Unc2sigma MDC

 K-40
 1460.81
 0.725
 0.009
 10.6700
 0.1100
 4.66412E+11
 2.92192E+09
 1.35253E-01
 1.21904E-01

 4.07340E-01
 CO-60
 1173.22
 0.896
 0.010
 100.0000
 1.92518E+03
 3.65240E-01
 -1.87961E-03
 1.23130E-02

 4.26405E-02
 CO-60
 1332.49
 0.794
 0.009
 100.0000
 0.0000
 1.92518E+03
 3.65240E-01
 1.51021E-02
 1.39730E-02

 4.66990E-02
 CS-137
 661.65
 1.535
 0.021
 85.1200
 0.2300
 1.10193E+04
 1.09572E+01
 -9.17665E-04
 1.82824E-02

 6.14079E-02
 AM-241
 59.54
 4.727
 0.000
 36.3000
 0.0000
 1.58153E+05
 0.00000E+00
 2.31859E-02
 2.61062E-02

5 nuclide lines identified

Detector Name: DET03 Sample Title: FASA240101 Peak Analysis Performed on: 11/14/2024 10:00:23 AM Peak Analysis From Channel: 50 Peak Analysis To Channel: 8190

	Peak No.	ROI start	ROI end	Peak centroid	Energy (keV)	FWHM Net (keV) Are	Peak a	Net Area Uncert.	Continuum Counts
М	1	66-	85	68.35	16.41	0.45 -1.07	6E-01	6.09	4.905E+00
m	2	66-	85	78.79	18.95	0.45 -1.01	9E+01	26.55	2.167E+01
	3	183-	204	191.95	46.54	0.24 -8.38	9E+01	166.62	2.710E+03
	4	235-	256	243.06	59.00	0.43 6.86	6E+01	154.60	2.293E+03
М	5	339-	395	345.01	83.85	0.43 2.74	3E+01	4.15	5.536E+02
m	6	339-	395	356.01	86.53	0.44 3.36	0E+01	4.42	5.424E+02
	7	428-	439	433.04	105.31	0.27 1.74	3E+01	87.44	1.016E+03
	8	541-	554	548.76	133.52	0.24 -9.66	6E+01	97.38	1.228E+03
	9	585-	609	597.66	145.44	0.24 -1.08	9E+02	154.38	2.176E+03
	10	664-	678	671.17	.163.36	0.35 -1.48	6E+01	101.26	1.243E+03
	11	753-	773	764.90	186.21	0.24 -1.20	6E+01	125.53	1.704E+03
	12	834-	850	843.26	205.31	0.24 -3.68	2E+00	107.79	1.407E+03
	13	964-	993	979.94	238.63	0.24 1.90	3E+02	153.55	1.981E+03
М	14 1	206-	1242	1210.09	294.73	0.50 1.64	1E+01	99.55	3.937E+02
m	15 1	206-	1242	1230.77	299.77	0.50 1.11	2E+01	67.48	3.971E+02
М	16 1	292-	1321	1295.06	315.45	0.50 - 4.93	6E+01	138.57	4.294E+02

m M m m	17 18 19 20 21 22 23	1292- 1400- 1400- 1400- 1400- 1747- 1799-	1321 1506 1506 1506 1506 1763 1814	1316.08 1408.15 1447.62 1463.16 1500.19 1756.25 1807.89	320.57 343.01 352.63 356.42 365.45 427.87 440.46	0.50 0.68 0.69 0.69 0.24 0.26	-3.996E+01 -1.515E+01 -1.056E+01 -4.690E+00 -7.706E+00 2.023E+01 -4.574E+00	130.92 164.23 114.43 50.86 83.53 74.07 69.11	4.398E+02 6.997E+02 8.365E+02 8.778E+02 8.523E+02 6.538E+02 5.976E+02
	24 25 26	2034-	2052	2040.16	477.60	0.31	-5.342E+00 5.561E+01	66.13 72.75	5.803E+02 6.164E+02
	26	2386-	2407	2393.40	537.26	0.38	3.957E+01 6.873E+01	73.02	5.964E+02 6.533E+02
	20	2493-	2511	2500.55	609.31	0.24	7.613E+01	85.10	8.389E+02
	30	2708-	2302	2002.30	621.94	0.24	-1.946E+UI	12.93	6.3/5E+02
	31	2977-	2992	2984 70	727 33	0.69	1 6905+02	54 32	3 781E+02
	32	3096-	3113	3105.30	756.73	0.89	1 454E+01	52 08	3 305E+02
	33	3258-	3278	3265.82	795.86	0.26	-3.898E+01	58.32	4.100E+02
	34	3318-	3334	3326.95	810.76	0.24	6.847E+00	49.82	3.132E+02
	35	3416-	3433	3425.77	834.85	0.25	-6.895E+00	55.89	3.859E+02
	36	3676-	3697	3684.99	898.04	0.53	3.382E+01	57.35	3.522E+02
	37	3731-	3749	3738.97	911.20	0.24	-7.715E-01	50.06	3.038E+02
	38	3968-	3984	3975.96	968.97	0.24	-9.891E+00	42.89	2.489E+02
	39	4100-	4115	4107.48	1001.03	0.24	8.800E+00	39.50	2.112E+02
	40	4503-	4518	4510.27	1099.22	0.51	1.684E+00	37.90	1.983E+02
М	41	4570-	4605	4580.02	1116.22	3.36	5.341E+01	31.81	3.333E+02
m	42	4570-	4605	4599.57	1120.99	3.36	2.088E+01	29.93	3.781E+02
	Peak No.	ROI start	ROI end	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
	43	4806-	4821	4813.92	1173.24	0.24	-2.608E+00	34.17	1.626E+02
	44	5221-	5238	5229.06	1274.44	0.24	-1.267E+01	33.85	1.557E+02
	45	5459-	5476	5467.24	1332.50	0.24	1.856E+01	34.34	1.434E+02
	46	5985-	6002	5993.67	1460.83	0.59	1.809E+01	32.60	1.289E+02
	47	6640-	6657	6648.68	1620.50	0.24	-2.177E+00	27.26	1.032E+02
M	D.i.		. 1	1+1-					

M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet

Reviewed by: ************************************	**** * * * * * *
CEMRC GAMMA SPECTRUM ANALYSIS	
Sample ID : FASA240301 Sample Description : FASA240301 :	
Background ID :	
Sample Collection Date : 3/13/2024 12:00:00 PM Count Start Date : 11/19/2024 8:37:30 AM	
Sample Aliquot: 1.00000E+00Aliquot Unc.: 0.00000E+00Aliquot Unit: Unit	
Live Time (sec) : 172800 Real Time (sec) : 172814	
Energy Calibration Used Done On : 10/1/2024 Efficiency Calibration Used Done On : 11/16/2023 Efficiency ID : DET03_70mlEff_23	
<pre>%Random Unc. : 0.0 %Systematic Unc. : 0.0</pre>	

Nuclide Energy Eff% UncEff% Abun% UncAbn% HL(d) UncHL(d) Conc(Bq/unit) Unc2sigma MDC

 K-40
 1460.81
 0.725
 0.009
 10.6700
 0.1100
 4.66412E+11
 2.92192E+09
 1.04269E-01
 1.32841E-01

 4.47481E-01
 0.000
 1173.22
 0.896
 0.010
 100.0000
 1.92518E+03
 3.65240E-01
 1.83984E-02
 1.22835E-02

 4.05389E-02
 0.794
 0.009
 100.0000
 0.0000
 1.92518E+03
 3.65240E-01
 -2.72930E-02
 1.35341E-02

 4.92475E-02
 0.537
 661.65
 1.535
 0.021
 85.1200
 0.2300
 1.10193E+04
 1.09572E+01
 -8.89891E-04
 2.15580E-02

 CS-137
 661.65
 1.535
 0.021
 85.1200
 0.2300
 1.10193E+04
 1.09572E+01
 -8.89891E-04
 2.15580E-02

 AM-241
 59.54
 4.746
 0.000
 36.3000
 0.0000
 1.58153E+05
 0.00000E+00
 2.06898E-02
 1.83180E-02

5 nuclide lines identified

Detector Name: DET03 Sample Title: FASA240301 Peak Analysis Performed on: 11/21/2024 8:37:49 AM Peak Analysis From Channel: 50 Peak Analysis To Channel: 8190

	Peak No.	ROI start	ROI end	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
	1	66-	85	79.79	19.20	0.26	-1.326E+01	21.52	3.926E+01
	2	181-	204	191.95	46.54	0.43	9.260E+01	176.87	2.827E+03
	3	238-	251	245.28	59.54	0.33	6.153E+01	108.93	1.448E+03
	4	342-	388	347.13	84.37	0.25	-2.197E+02	271.81	4.288E+03
	5	421-	439	433.04	105.31	0.41	5.946E+01	120.97	1.523E+03
	6	543-	555	548.76	133.52	0.24	-1.858E+01	91.42	1.090E+03
	7	575-	604	597.66	145.44	0.24	-2.572E+02	190.80	2.956E+03
	8	665-	679	671.17	163.36	0.39	-3.478E+01	99.93	1.218E+03
	9	756-	771	764.90	186.21	0.24	-2.307E+01	102.50	1.321E+03
	10	836-	856	843.26	205.31	0.29	-4.310E+01	124.33	1.687E+03
	11	971-	995	979.94	238.63	0.33	9.384E+01	133.79	1.706E+03
М	12 1	1206-	1242	1214.56	295.82	0.49	-9.407E+00	87.26	4.128E+02
m	13 1	1206-	1242	1228.60	299.25	0.50	-8.758E+00	81.24	4.029E+02
	14 1	1290-	1330	1314.07	320.08	0.24	-1.426E+02	182.56	2.377E+03
М	15 1	1406-	1503	1414.02	344.45	0.55	1.661E+01	28.01	3.780E+02
m	16 1	1406-	1503	1443.96	351.74	0.55	2.382E+01	28.96	3.818E+02

<pre>m 17 1406- 1503 m 18 1406- 1503 19 1750- 1763 20 1799- 1814 21 1954- 1969 22 2034- 2048 23 2197- 2212 24 2386- 2406 25 2493- 2509 26 2544- 2560 27 2697- 2724 28 2975- 2992 29 3095- 3113 30 3258- 3273 31 3319- 3334 32 3418- 3441 33 3675- 3695 34 3731- 3747 35 3967- 3985 36 4100- 4115 37 4503- 4518 M 38 4570- 4604 m 39 4570- 4604 m 39 4570- 4604 m 39 4570- 4604 m 39 4570- 4604 m 40 4806- 4821 41 5221- 5238 42 5459- 5476 </pre>	1467.38 1498.14 1756.25 1807.89 1960.25 2040.16 2204.99 2393.40 2500.55 2552.36 2715.30 2984.70 3105.30 3265.82 3326.95 3425.77 3684.99 3738.97 3675.96 4107.48 4510.27 4579.11 4593.31 4813.92 5229.06 5467.24 Peak	357.45 364.95 427.87 440.46 477.60 497.08 537.26 583.19 609.31 621.94 661.66 727.33 756.73 795.86 810.76 834.85 898.04 911.20 968.97 1001.03 1099.22 1116.00 1173.24 1274.44 1332.50	0.55 4.629E+01 0.56 1.909E+01 0.31 -2.760E+01 0.34 1.172E+01 0.35 2.250E+01 0.34 -1.899E+01 0.35 4.699E+01 0.24 3.605E+01 0.28 8.115E+00 1.12 1.163E+02 0.41 1.351E+01 0.38 -9.525E+00 0.24 -4.819E+00 0.26 -5.685E+01 0.26 3.263E+01 0.29 7.898E+00 0.25 -2.611E+00 0.24 -6.494E-01 0.24 -6.494E-01 0.24 1.244E+01 0.24 -3.420E+01 FWHM Net Peak	33.53 29.20 60.59 69.03 64.18 59.54 61.01 74.06 77.60 65.31 85.92 58.21 55.37 46.72 46.12 70.06 56.04 45.98 46.38 38.37 35.99 22.72 17.26 34.75 35.21 33.91 Net Area	3.847E+02 3.884E+02 5.026E+02 5.325E+02 4.930E+02 4.531E+02 6.090E+02 7.499E+02 6.767E+02 3.671E+02 2.935E+02 3.671E+02 2.935E+02 3.275E+02 3.275E+02 2.544E+02 2.741E+02 1.786E+02 1.481E+02 1.556E+02 1.692E+02 Continuum
No. start end	centroid	(keV)	(keV) Area	Uncert.	Counts
43 5984- 6003 44 6640- 6657	6648.68	1620.50	0.24 1.394E+01 0.24 -9.990E+00	27.61	1.090E+02
<pre>M = First peak in m = Other peak in F = Fitted singlet</pre>	a multiple a multiple	et region et region			

Environmental Chemistry Group

From October 1st to December 31st, 2024, the Environmental Chemistry (EC) group processed the anion and cation analyses for the Fixed Air Sampler (FAS) filters and the ambient air (HiVol) filters and finished the complete analyses for surface water samples (including the anions, cations, pH, total organic carbon, conductivity, specific gravity, TDS/TSS, and metals analyses) collected in 2024.

The following Tables and Figures represent characteristic results.

FAS Filters – Station A

Sample Type:FAS, Station AYear:2024Analysis Performed:Metals in weekly composites

Week	Aluminum	Cadmium	Lead	Magnesium	Silicon	Thorium	Uranium
WEEK	ng/m ³						
01/01/24							
01/08/24							
01/15/24							
01/22/24							
02/01/24							
02/08/24							
02/15/24							
02/22/24							
03/01/24							
03/08/24							
03/15/24							
03/22/24							
04/01/24							
04/08/24							
04/15/24							
04/22/24							
05/01/24							
05/08/24							
05/15/24							
05/22/24							
06/01/24							
06/08/24							
06/15/24							
06/22/24							
07/01/24							
07/08/24							
07/15/24							
07/22/24							
08/01/24							
08/08/24							
08/15/24							
08/22/24							
09/01/24							
09/08/24							
09/15/24							
09/22/24							
10/01/24							
10/08/24							
10/15/24							
10/22/24							
11/01/24							
11/08/24							
11/15/24							
11/22/24							
12/01/24		<u> </u>					
12/01/24		<u> </u>					
12/15/24		<u> </u>					
12/13/24							
14/44/44	1						

NOTE: Filters were not received for the following time frames: N/A.

Sample Type:FAS, Station AYear:2024Analysis Performed:Anions in weekly composites

Week	Chloride	Nitrate	Phosphate	Sulfate
week	ng/m ³	ng/m ³	ng/m ³	ng/m ³
01/01/24	1.83E+05	4.44E+02	<mdl< th=""><th>2.53E+04</th></mdl<>	2.53E+04
01/08/24	2.60E+05	3.47E+02	<mdl< th=""><th>2.56E+04</th></mdl<>	2.56E+04
01/15/24	2.78E+05	4.75E+02	<mdl< th=""><th>2.01E+04</th></mdl<>	2.01E+04
01/22/24	3.74E+05	3.01E+02	<mdl< th=""><th>5.18E+04</th></mdl<>	5.18E+04
02/01/24	2.13E+05	<mdl< th=""><th><mdl< th=""><th>3.62E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>3.62E+04</th></mdl<>	3.62E+04
02/08/24	3.43E+05	4.03E+01	<mdl< th=""><th>3.06E+04</th></mdl<>	3.06E+04
02/15/24	#VALUE!	8.64E+01	<mdl< th=""><th>1.00E+05</th></mdl<>	1.00E+05
02/22/24	1.16E+06	1.90E+02	<mdl< th=""><th>5.62E+04</th></mdl<>	5.62E+04
03/01/24	2.63E+05	2.47E+02	<mdl< th=""><th>3.15E+04</th></mdl<>	3.15E+04
03/08/24	4.15E+05	3.29E+02	<mdl< th=""><th>2.61E+04</th></mdl<>	2.61E+04
03/15/24	2.27E+05	2.08E+02	<mdl< th=""><th>3.75E+04</th></mdl<>	3.75E+04
03/22/24	1.86E+05	3.80E+02	<mdl< th=""><th>3.98E+04</th></mdl<>	3.98E+04
04/01/24	5.13E+05	2.30E+02	<mdl< th=""><th>5.93E+04</th></mdl<>	5.93E+04
04/08/24	5.03E+05	2.47E+02	<mdl< th=""><th>7.11E+04</th></mdl<>	7.11E+04
04/15/24	4.48E+05	2.33E+02	<mdl< th=""><th>4.07E+04</th></mdl<>	4.07E+04
04/22/24	4.54E+05	2.64E+02	<mdl< th=""><th>2.63E+04</th></mdl<>	2.63E+04
05/01/24	4.59E+05	3.24E+02	<mdl< th=""><th>2.85E+04</th></mdl<>	2.85E+04
05/08/24	4.12E+05	3.90E+02	<mdl< th=""><th>2.37E+04</th></mdl<>	2.37E+04
05/15/24	3.93E+05	2.13E+02	<mdl< th=""><th>2.40E+04</th></mdl<>	2.40E+04
05/22/24	1.45E+06	2.64E+02	<mdl< th=""><th>2.76E+04</th></mdl<>	2.76E+04
06/01/24	1.62E+05	3.39E+02	<mdl< th=""><th>1.53E+04</th></mdl<>	1.53E+04
06/08/24	3.01E+05	<mdl< th=""><th><mdl< th=""><th>2.20E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>2.20E+04</th></mdl<>	2.20E+04
06/15/24	1.42E+05	2.27E+02	<mdl< th=""><th>1.58E+04</th></mdl<>	1.58E+04
06/22/24	1.48E+05	2.88E+02	<mdl< th=""><th>1.95E+04</th></mdl<>	1.95E+04
07/01/24	1.50E+05	1.22E+02	1.10E+02	1.84E+04
07/08/24	2.46E+05	5.65E+01	<mdl< th=""><th>2.00E+04</th></mdl<>	2.00E+04
07/15/24	5.62E+04	5.11E+01	7.07E+01	1.18E+04
07/22/24	4.32E+04	<mdl< th=""><th><mdl< th=""><th>1.05E+04</th></mdl<></th></mdl<>	<mdl< th=""><th>1.05E+04</th></mdl<>	1.05E+04
08/01/24				
08/08/24				
08/15/24				
08/22/24				
09/01/24				
09/08/24				
09/15/24				
09/22/24				
10/01/24				
10/08/24				
10/15/24				
10/22/24				
11/01/24				
11/08/24				
11/15/24				
11/22/24				
12/01/24				
12/08/24				
12/15/24				
12/22/24				

NOTE: Filters were not received for the following time frames: N/A

Sample Type:FAS, Station AYear:2024Analysis Performed:Cations in weekly composites

Week	Sodium ng/m ³	Ammonium ng/m ³	Magnesium ng/m ³	Potassium ng/m ³	Calcium ng/m ³
01/01/24	1.26E+06	<mdl< th=""><th>2.44E+03</th><th>2.42E+03</th><th>1.14E+04</th></mdl<>	2.44E+03	2.42E+03	1.14E+04
01/08/24	1.71E+06	<mdl< th=""><th>5.94E+02</th><th>2.21E+03</th><th>1.07E+04</th></mdl<>	5.94E+02	2.21E+03	1.07E+04
01/15/24	1.85E+06	<mdl< th=""><th>1.82E+03</th><th>1.88E+03</th><th>8.75E+03</th></mdl<>	1.82E+03	1.88E+03	8.75E+03
01/22/24	2.49E+06	<mdl< th=""><th>5.36E+02</th><th>2.40E+03</th><th>2.20E+04</th></mdl<>	5.36E+02	2.40E+03	2.20E+04
02/01/24	1.38E+06	<mdl< th=""><th>9.01E+02</th><th>3.12E+03</th><th>1.49E+04</th></mdl<>	9.01E+02	3.12E+03	1.49E+04
02/08/24	2.27E+06	<mdl< th=""><th>7.21E+02</th><th>3.63E+03</th><th>1.14E+04</th></mdl<>	7.21E+02	3.63E+03	1.14E+04
02/15/24	<mark>#VALUE!</mark>	<mdl< th=""><th>5.85E+03</th><th>1.01E+04</th><th>3.64E+04</th></mdl<>	5.85E+03	1.01E+04	3.64E+04
02/22/24	3.12E+06	<mdl< th=""><th>4.12E+03</th><th>6.45E+03</th><th>2.14E+04</th></mdl<>	4.12E+03	6.45E+03	2.14E+04
03/01/24	1.75E+06	<mdl< th=""><th>5.51E+02</th><th>2.38E+03</th><th>1.24E+04</th></mdl<>	5.51E+02	2.38E+03	1.24E+04
03/08/24	2.81E+06	<mdl< th=""><th>9.99E+02</th><th>2.80E+03</th><th>1.08E+04</th></mdl<>	9.99E+02	2.80E+03	1.08E+04
03/15/24	1.49E+06	<mdl< th=""><th>3.52E+03</th><th>4.07E+03</th><th>1.68E+04</th></mdl<>	3.52E+03	4.07E+03	1.68E+04
03/22/24	1.21E+06	<mdl< th=""><th>4.96E+02</th><th>2.13E+03</th><th>1.80E+04</th></mdl<>	4.96E+02	2.13E+03	1.80E+04
04/01/24	3.40E+06	<mdl< th=""><th>9.82E+02</th><th>3.99E+03</th><th>2.33E+04</th></mdl<>	9.82E+02	3.99E+03	2.33E+04
04/08/24	3.35E+06	<mdl< th=""><th>1.02E+03</th><th>4.07E+03</th><th>2.63E+04</th></mdl<>	1.02E+03	4.07E+03	2.63E+04
04/15/24	3.04E+06	<mdl< th=""><th>8.30E+02</th><th>2.99E+03</th><th>1.52E+04</th></mdl<>	8.30E+02	2.99E+03	1.52E+04
04/22/24	3.09E+06	<mdl< th=""><th>7.87E+02</th><th>2.87E+03</th><th>8.45E+03</th></mdl<>	7.87E+02	2.87E+03	8.45E+03
05/01/24	3.11E+06	<mdl< th=""><th>1.87E+03</th><th>3.17E+03</th><th>8.98E+03</th></mdl<>	1.87E+03	3.17E+03	8.98E+03
05/08/24	2.76E+06	<mdl< th=""><th>1.75E+03</th><th>3.07E+03</th><th>7.73E+03</th></mdl<>	1.75E+03	3.07E+03	7.73E+03
05/15/24	2.62E+06	<mdl< th=""><th>4.01E+03</th><th><mdl< th=""><th>8.32E+03</th></mdl<></th></mdl<>	4.01E+03	<mdl< th=""><th>8.32E+03</th></mdl<>	8.32E+03
05/22/24	3.82E+06	<mdl< th=""><th>1.99E+03</th><th>3.42E+03</th><th>8.50E+03</th></mdl<>	1.99E+03	3.42E+03	8.50E+03

06/01/24	1.11E+06	<mdl< th=""><th>5.38E+02</th><th>2.10E+03</th><th>4.96E+03</th></mdl<>	5.38E+02	2.10E+03	4.96E+03
06/08/24	2.01E+06	<mdl< th=""><th>2.66E+02</th><th>2.49E+03</th><th>6.58E+03</th></mdl<>	2.66E+02	2.49E+03	6.58E+03
06/15/24	9.45E+05	<mdl< th=""><th>1.46E+03</th><th><mdl< th=""><th>6.26E+03</th></mdl<></th></mdl<>	1.46E+03	<mdl< th=""><th>6.26E+03</th></mdl<>	6.26E+03
06/22/24	9.94E+05	<mdl< th=""><th>4.71E+02</th><th><mdl< th=""><th>7.79E+03</th></mdl<></th></mdl<>	4.71E+02	<mdl< th=""><th>7.79E+03</th></mdl<>	7.79E+03
07/01/24	9.91E+05	<mdl< th=""><th>1.37E+03</th><th>1.74E+03</th><th>7.83E+03</th></mdl<>	1.37E+03	1.74E+03	7.83E+03
07/08/24	1.65E+06	<mdl< th=""><th>1.72E+03</th><th>3.10E+03</th><th>6.61E+03</th></mdl<>	1.72E+03	3.10E+03	6.61E+03
07/15/24	3.61E+04	<mdl< th=""><th>9.82E+02</th><th>1.68E+03</th><th>4.93E+03</th></mdl<>	9.82E+02	1.68E+03	4.93E+03
07/22/24	2.78E+04	<mdl< th=""><th>8.22E+02</th><th>1.75E+03</th><th>4.02E+03</th></mdl<>	8.22E+02	1.75E+03	4.02E+03
08/01/24					
08/08/24					
08/15/24					
08/22/24					
09/01/24					
09/08/24					
09/15/24					
09/22/24					
10/01/24					
10/08/24					
10/15/24					
10/22/24					
11/01/24					
11/08/24					
11/15/24					
11/22/24					
12/01/24					
12/08/24					
12/15/24					
12/22/24					

NOTE: Filters were not received for the following time frames: N/A

FAS Filters – Station B

Sample Type:	FAS, Station B
r r vr	,

Year: 2024

Analysis Performed: Metals in monthly composites

Month	Aluminum ng/m ³	Cadmium ng/m ³	Lead ng/m ³	Magnesium ng/m ³	Silicon ng/m ³	Thorium ng/m ³	Uranium ng/m ³
January							
February							
March							
April							
May							
June							
July							
August							
September							
October							
November							
December							

Sample Type:FAS, Station BYear:2024 Analysis Performed:

Anions in	monthly	composites
-----------	---------	------------

Month	Chloride ng/m ³	Nitrate ng/m ³	Phosphate ng/m ³	Sulfate ng/m ³
January				
February				
March				
April				
May				
June				
July				
August				
September				
October				
November				
December				

Sample Type:FAS, Station BYear:2024

Analysis Performed: Cations in monthly composites

Month	Sodium ng/m ³	Ammonium ng/m ³	Magnesium ng/m ³	Potassium ng/m ³	Calcium ng/m ³
January					
February					
March					
April					
May					
June					
July					
August					
September					
October					
November					
December					

Whatman Filters

Sample Type:	Near Field (107), ambient air
Year:	2024
Analysis Performed:	Metals

Cadmium µg/m³ Uranium μg/m³ Start Aluminum Lead Silica Thorium μg/m³ $\mu g/m^3$ $\mu g/m^3$ μg/m³ Date

Sample Type:Cactus Flats (108), ambient airYear:2024Analysis Performed:Metals

Start Date	Aluminum µg/m ³	Cadmium µg/m³	Lead µg/m³	Silica µg/m³	Thorium μg/m³	Uranium μg/m³

Sample Type: Near Field (107), ambient air Year: 2024 Analysis Performed: Anions

Start Date	Chloride μg/m³	Nitrate µg/m³	Phosphate μg/m ³	Sulfate µg/m³
01/19/24	4.17E-01	1.45E+00	9.63E-04	1.02E+00
03/01/24	3.01E-01	1.78E+00	2.77E-03	1.31E+00
03/27/24	3.12E-01	1.90E+00	2.72E-03	1.78E+00
04/26/24	3.14E-01	1.98E+00	3.94E-03	1.92E+00
05/24/24	1.54E-01	1.76E+00	3.22E-03	2.59E+00
06/19/24	1.27E-01	1.92E+00	<mdl< td=""><td>1.87E+00</td></mdl<>	1.87E+00

Sample Type:Cactus Flats (108), ambient airYear:2024Analysis Performed:Anions

Start Date	Chloride µg/m³	Nitrate μg/m³	Phosphate µg/m ³	Sulfate µg/m³
01/19/24	2.97E-01	1.58E+00	<mdl< th=""><th>1.20E+00</th></mdl<>	1.20E+00
03/01/24	2.16E-01	1.45E+00	1.49E-03	1.31E+00
03/27/24	3.11E-01	1.77E+00	1.33E-03	1.75E+00
04/26/24	2.74E-01	2.09E-03	2.07E+00	2.63E-03
05/24/24	1.52E-01	1.87E+00	2.40E-03	2.76E+00
06/19/24	1.01E-01	1.58E+00	<mdl< th=""><th>1.46E+00</th></mdl<>	1.46E+00

Sample Type:Near Field (107), ambient airYear:2024Analysis Performed:Cations

Start Date	Calcium µg/m³	Magnesium μg/m³	Potassium µg/m ³	Sodium µg/m³
01/19/24	7.24E-01	6.65E-02	9.17E-02	2.84E-01
03/01/24	9.90E-01	6.54E-02	8.23E-02	2.43E-01
03/27/24	1.12E+00	9.49E-02	1.10E-01	3.08E-01
04/26/24	3.04E-01	2.48E-01	2.33E-02	5.45E-02
05/24/24	1.71E+00	1.96E-02	5.31E-02	4.12E-01
06/19/24	1.24E+00	2.33E-02	5.46E-02	3.04E-01

Sample Type: Cactus Flats (108), ambient air Year: 2024

Analysis Performed: Cations

Start Date	Calcium μg/m³	Magnesium μg/m³	Potassium µg/m³	Sodium µg/m³
01/19/24	8.96E-01	4.57E-02	5.38E-02	2.24E-01
03/01/24	1.01E+00	9.52E-03	2.55E-02	1.90E-01
03/27/24	1.24E+00	7.87E-02	8.55E-02	2.83E-01
04/26/24	2.78E-01	1.93E-01	2.11E-02	4.18E-02
05/24/24	1.84E+00	9.65E-02	1.05E-01	3.79E-01
06/19/24	1.89E+00	2.61E-02	5.16E-02	3.43E-01

Drinking Water

Sample Type: Drinking Water Year: 2024

Analysis Performed: Anions

Sample Location	Chloride µg/L	Nitrate µg/L	Phosphate µg/L	Sulfate µg/L
Carlsbad (Sheep draw)	3.73E+04	4.60E+03	<mdl< th=""><th>9.26E+04</th></mdl<>	9.26E+04
Hobbs	1.19E+05	2.17E+04	<mdl< th=""><th>1.47E+05</th></mdl<>	1.47E+05
Double Eagle PRV4	3.39E+04	1.35E+04	<mdl< th=""><th>3.94E+04</th></mdl<>	3.94E+04
Loving	4.02E+04	2.03E+04	<mdl< th=""><th>1.25E+05</th></mdl<>	1.25E+05
Otis	2.31E+05	1.80E+04	<mdl< th=""><th>5.55E+05</th></mdl<>	5.55E+05
Malaga	6.46E+05	1.57E+04	<mdl< th=""><th>9.92E+05</th></mdl<>	9.92E+05

Sample Type: Drinking Water Year: 2024

Analysis P ns

erformed:	Catior
-----------	--------

Sample Location	Calcium µg/L	Magnesium µg/L	Potassium μg/L	Sodium µg/L
Carlsbad (Sheep draw)	7.42E+04	3.00E+04	<mdl< th=""><th>2.64E+04</th></mdl<>	2.64E+04
Hobbs	1.11E+05	2.13E+04	<mdl< th=""><th>5.73E+04</th></mdl<>	5.73E+04
Double Eagle PRV4	5.22E+04	9.85E+03	3.65E+03	3.51E+04

Loving	9.01E+04	3.43E+04	<mdl< th=""><th>2.62E+04</th></mdl<>	2.62E+04
Otis	2.40E+05	6.22E+04	<mdl< th=""><th>8.79E+04</th></mdl<>	8.79E+04
Malaga	4.58E+05	1.16E+05	<mdl< th=""><th>2.06E+05</th></mdl<>	2.06E+05

Sample Type: Drinking Water Year: 2024 Analysis Performed: pH

Sample Location	pH @ 20.6°C
Carlsbad (Sheep draw)	7.99
Hobbs	7.95
Double Eagle PRV4	8.47
Loving	8.19
Otis	8.26
Malaga	8.01

Sample Type:Drinking WaterYear:2024Analysis Performed:Total Organic Carbon

Sample	TOC
Location	mg/L

Sheep Draw	1.231
Hobbs	1.114
Double Eagle PRV-4	0.5095
Loving	0.7142
Otis	0.5344
Malaga	0.7121

Sample Type: Drinking Water Year: 2024 Analysis

onductivity

Sample Location	Conductivity mS/cm	Temperature °C
Sheep Draw (Carlsbad)	0.697	21.0
Loving	0.807	21.0
Otis	1.93	21.0
Malaga	3.81	21.0
Hobbs	0.995	21.0
PRV4 (Double Eagle)	0.496	21.0

Sample Type: Drinking Water Year: 2024 Analysis Performed: Specific gravity

Sample Location	Specific Gravity
Sheep Draw (Carlsbad)	0.995
Loving	0.996
Otis	0.997
Malaga	0.997
Hobbs	0.996
PRV4 (Double Eagle)	0.996

Sample Type: Drinking Water Year: 2024 Analysis Performed: TDS/TSS

Sample Location	TDS mg/L	TSS mg/L
Sheep Draw (Carlsbad)	220.0	N.D.
Loving	400.0	N.D.
Otis	1440.0	N.D.
Malaga	3020.0	N.D.
Hobbs	620.0	N.D.
PRV4 (Double Eagle)	120.0	N.D.
N.D. = non-detect.		

Sample Type: Drinking Water Year: 2024 Analysis Performed: Metals

Metal	Carlsbad Conc μg/L	Loving Conc μg/L	Otis Conc μg/L	Malaga Conc μg/L	Hobbs Conc μg/L	Double Eagle (PRV4) Conc μg/L
Ag	7.19E-02	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.00E-01</td></mdc<></td></mdc<>	<mdc< td=""><td>2.00E-01</td></mdc<>	2.00E-01
Al	3.43E+00	2.04E+00	4.18E+00	6.74E+00	2.11E+00	3.55E+00
As	7.69E-01	1.72E+00	1.87E+00	2.62E+00	8.42E+00	7.82E+00
Ba	7.25E+01	3.39E+01	1.66E+01	1.34E+01	5.64E+01	1.02E+02
Be	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ca	7.44E+04	8.80E+04	2.34E+05	4.43E+05	1.13E+05	5.44E+04
Cd	5.42E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td>1.31E-02</td><td><mdc< td=""></mdc<></td></mdc<>	1.31E-02	<mdc< td=""></mdc<>
Ce	3.10E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Со	1.35E-01	1.64E-01	4.03E-01	7.01E-01	2.01E-01	9.89E-02
Cr	1.41E+00	2.40E+00	2.12E+00	1.81E+00	1.79E+00	1.31E+00
Cu	2.63E+00	3.10E+00	5.03E+00	3.57E+00	4.72E+00	1.64E+00
Dy	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Er	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Eu	1.86E-02	8.17E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.51E-02</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.51E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>2.51E-02</td></mdc<>	2.51E-02
Fe	2.80E+02	3.32E+02	1.02E+03	1.73E+03	1.05E+03	2.34E+02
Gd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
K	1.30E+03	1.90E+03	2.86E+03	3.99E+03	2.74E+03	2.96E+03
La	4.46E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Li	7.43E+00	2.13E+01	4.32E+01	6.44E+01	3.72E+01	2.06E+01
Mg	3.47E+04	3.91E+04	7.69E+04	1.32E+05	2.71E+04	1.13E+04
Mn	4.99E-01	3.01E-02	6.79E-02	4.45E-01	1.24E+00	1.08E+00
Мо	1.36E+00	1.67E+00	3.47E+00	4.00E+00	2.72E+00	1.93E+00
Na	2.60E+04	2.58E+04	8.73E+04	1.94E+05	5.59E+04	3.48E+04
Nd	3.23E-03	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ni	3.38E+00	3.88E+00	1.12E+01	1.85E+01	5.45E+00	2.43E+00
Р	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pb	3.14E-01	2.26E-01	<mdc< td=""><td>2.36E-01</td><td>1.24E+00</td><td>4.70E-01</td></mdc<>	2.36E-01	1.24E+00	4.70E-01
Pr	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sb	3.22E-02	3.41E-02	4.56E-02	4.34E-02	6.71E-02	3.43E-02
Sc	1.84E+00	2.92E+00	3.26E+00	3.17E+00	7.42E+00	4.82E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	6.29E+03	9.89E+03	1.04E+04	1.05E+04	2.60E+04	1.65E+04
Sr	3.49E+02	8.33E+02	2.91E+03	5.80E+03	1.28E+03	5.93E+02
Th	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
TI	1.09E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<></td></mdc<>	<mdc< td=""><td>2.13E-02</td><td>1.23E-02</td></mdc<>	2.13E-02	1.23E-02
U	8.22E-01	1.94E+00	3.83E+00	5.67E+00	3.77E+00	1.71E+00
V	3.79E+00	1.16E+01	1.04E+01	7.93E+00	3.16E+01	3.17E+01
Zn	8.28E+00	4.95E+00	2.66E+01	8.69E+00	3.81E+01	6.81E+00

Surface Water

Sample Type:	Surface Water
Year:	2024
Analysis Performed:	Anions

Sample	Chloride	Nitrate	Phosphate	Sulfate
Location	μg/L	μg/L	μg/L	μg/L
Hill Tank	4.54E+03	5.60E+02	5.09E+02	1.38E+04
Noya Tank	4.46E+04	<mdl< th=""><th><mdl< th=""><th>6.44E+03</th></mdl<></th></mdl<>	<mdl< th=""><th>6.44E+03</th></mdl<>	6.44E+03
Pierce Canyon	1.69E+06	4.06E+03	<mdl< th=""><th>1.77E+06</th></mdl<>	1.77E+06
Lake Carlsbad (Shallow)	6.13E+05	4.11E+03	<mdl< th=""><th>1.04E+06</th></mdl<>	1.04E+06
Lake Carlsbad (Deep)	6.39E+05	4.11E+03	<mdl< th=""><th>1.08E+06</th></mdl<>	1.08E+06
Brantley Lake (Shallow)	5.33E+05	1.39E+03	<mdl< th=""><th>8.83E+05</th></mdl<>	8.83E+05
Brantley (Deep)	7.15E+05	1.61E+03	<mdl< th=""><th>9.96E+05</th></mdl<>	9.96E+05
Red Bluff (Shallow)	3.71E+06	<mdl< th=""><th><mdl< th=""><th>3.70E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>3.70E+06</th></mdl<>	3.70E+06
Red Bluff (Deep)	3.69E+06	<mdl< th=""><th><mdl< th=""><th>3.68E+06</th></mdl<></th></mdl<>	<mdl< th=""><th>3.68E+06</th></mdl<>	3.68E+06

Surface Water Sample Type: **Year:** 2024

Analysis Performed: Cations

Sample	Calcium	Magnesium	Potassium	Sodium
Location	μg/L	μg/L	μg/L	μg/L
Hill Tank	6.75E+04	8.91E+03	2.44E+04	2.41E+03
Noya Tank	2.13E+05	1.55E+04	4.25E+04	1.28E+04
Pierce Canyon	5.68E+05	2.12E+05	4.16E+04	9.76E+05
Lake Carlsbad (Shallow)	3.53E+05	1.18E+05	2.19E+04	3.94E+05
Lake Carlsbad (Deep)	3.54E+05	1.19E+05	2.14E+04	3.99E+05
Brantley Lake (Shallow)	3.26E+05	7.75E+04	2.26E+04	3.23E+05
Brantley Lake (Deep)	3.65E+05	9.44E+04	2.40E+04	4.35E+05
Red Bluff (Shallow)	9.56E+05	5.65E+05	1.71E+05	2.18E+06
Red Bluff (Deep)	9.95E+05	5.62E+05	1.85E+05	2.20E+06

Sample Type: Surface Water Year: 2024

Analysis Performed: pH

Sample Location	рН @ 24°С
Hill Tank	8.782
Noya Tank	8.180
Pierce Canyon	8.338
Lake Carlsbad (Shallow)	8.22
Lake Carlsbad (Deep)	8.32
Brantley Lake (Shallow)	8.43
Brantley Lake (Deep)	8.36
Red Bluff (Shallow)	8.25
Red Bluff (Deep)	8.24

Sample Type:Surface WaterYear:2024 Analysis Performed: Conductivity

Sample Location	Conductivity mS/cm	Temperature °C
Hill Tank	0.456	20.0
Noya Tank	0.533	20.3
Pierce Canyon	9.83	19.9
Lake Carlsbad (Shallow)	3.88	21.5
Lake Carlsbad (Deep)	3.94	21.5
Brantley Lake (Shallow)	3.15	19.3
Brantley Lake (Deep)	3.90	19.4
Red Bluff (Shallow)	14.55	20.3
Red Bluff (Deep)	14.70	19.9

Sample Type: Surface Water Year: 2024 Analysis Performed: Specific gravity

Sample Location	SG T/4°C
Hill Tank	0.987
Noya Tank	0.980
Pierce Canyon	0.983
Lake Carlsbad (Shallow)	1.001
Lake Carlsbad (Deep)	0.999

Brantley Lake (Shallow)	1.001
Brantley (Deep)	0.998
Red Bluff (Shallow)	1.004
Red Bluff (Deep)	1.005

Sample Type: Surface Water Year: 2024 Analysis Performed: TOC

> TOC Sample Location mg/L Hill Tank 14.66 115.0 Noya Tank **Pierce Canyon** 5.665 Lake Carlsbad (Shallow) 1.875 Lake Carlsbad (Deep) 1.527 Brantley Lake (Shallow) 4.741 4.711 Brantley (Deep) 10.43 **Red Bluff (Shallow)** Red Bluff (Deep) 10.33

Sample Type: Year: Analysis Performed: TDS/TSS

Surface Water 2024

Sample Location	TDS mg/L	TSS mg/L
Hill Tank	160.00	140.00
Noya Tank	460.00	520.00
Pierce Canyon	5620.00	220.00
Lake Carlsbad (Shallow)	3040.00	80.00
Lake Carlsbad (Deep)	2240.00	N.D.
Brantley Lake (Shallow)	2080.00	320.00
Brantley (Deep)	2280.00	40.00
Red Bluff (Shallow)	11840.00	N.D.
Red Bluff (Deep)	10680.00	40.00

Sample Type: Year: Analysis Performed:

Surface Water 2024

Metals

Hill Tank Noya Tank Pierce Canyon Conc Conc Metal Conc μg/L μg/L μg/L <MDC <MDC 4.32E-01 Ag 1.68E+04 4.56E+02 1.14E+02 AI As 7.34E+00 2.86E+01 <MDC Ва 2.11E+02 3.04E+03 4.09E+01 <MDC <MDC Be 3.21E+00 6.39E+04 4.46E+05 5.39E+05 Са Cd <MDC 1.45E+00 <MDC Ce 1.93E+00 1.13E+02 5.51E-01 3.08E+01 Со 1.17E+00 1.54E+00 Cr 1.58E+00 1.35E+01 <MDC Cu 1.18E+01 4.30E+01 3.05E+00 Dy 1.67E-01 1.04E+01 <MDC Er 7.77E-02 4.72E+00 3.78E-02 <MDC 4.26E+00 <MDC Eu Fe 4.32E+02 1.19E+04 1.78E+03

Gd	2.47E-01	1.63E+01	<mdc< td=""></mdc<>	
Hg	<mdl< td=""><td><mdl< td=""><td colspan="2"><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td colspan="2"><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>	
K	2.15E+04	4.58E+04	1.66E+04	
La	8.98E-01	4.98E+01	<mdc< td=""></mdc<>	
Li	4.43E+00	2.40E+01	8.34E+01	
Mg	9.69E+03	3.77E+04	2.15E+05	
Mn	9.24E+01	4.88E+03	2.14E+01	
Мо	9.23E-01	1.43E+00	4.02E+00	
Na	2.26E+03	1.24E+04	9.31E+05	
Nd	1.03E+00	6.30E+01	<mdc< td=""></mdc<>	
Ni	4.79E+00	5.48E+01	2.44E+01	
Р	2.76E+02	5.85E+03	<mdc< td=""></mdc<>	
Pb	<mdc< td=""><td>7.41E+01</td><td><mdc< td=""></mdc<></td></mdc<>	7.41E+01	<mdc< td=""></mdc<>	
Pr	2.39E-01	1.38E+01	<mdc< td=""></mdc<>	
Sb	6.35E-01	8.23E-01	<mdc< td=""></mdc<>	
Sc	1.73E+00	9.05E+00	1.08E+00	
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>	
Si	6.56E+03	2.91E+04	4.67E+03	
Sr	3.13E+02	9.98E+02	8.50E+03	
Th				
TI	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>	
U	7.27E-01	1.49E+00	8.19E+00	
V	1.77E+01	1.16E+02	5.13E+00	
Zn	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>	

	Brantlev Lake		Lake Carlsbad		Red Bluff	
	Shallow	Deep	Shallow	Deep	Shallow	Deep
Metal	Conc	Conc	Conc	Conc	Conc	Conc
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Ag	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
AĬ	1.35E+02	1.62E+02	2.48E+01	2.94E+01	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
As	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ba	1.20E+02	1.17E+02	1.62E+01	1.63E+01	8.18E+01	8.62E+01
Be	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ca	3.03E+05	3.38E+05	3.42E+05	3.39E+05	9.81E+05	9.98E+05
Cd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ce	4.96E-01	2.17E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Co	<mdc< td=""><td>6.32E-01</td><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	6.32E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Cr	6.90E+00	6.57E+00	7.72E+00	7.92E+00	3.31E+01	3.98E+01
Cu	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Dy	3.33E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Er	3.13E-01	<mdc< td=""><td>3.30E-02</td><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.30E-02	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Eu	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Fe	1.06E+03	1.24E+03	1.17E+03	1.34E+03	4.73E+03	4.11E+03
Gd	3.40E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Hg	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
К	8.48E+03	8.31E+03	4.92E+03	4.92E+03	4.15E+04	4.11E+04
La	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Li	2.50E+01	3.09E+01	3.88E+01	3.90E+01	1.71E+02	1.67E+02
Mg	6.75E+04	8.44E+04	1.08E+05	1.10E+05	4.40E+05	4.45E+05
Mn	8.31E+00	1.26E+01	<mdc< td=""><td><mdc< td=""><td>4.24E+01</td><td>4.27E+01</td></mdc<></td></mdc<>	<mdc< td=""><td>4.24E+01</td><td>4.27E+01</td></mdc<>	4.24E+01	4.27E+01
Мо	3.33E+00	<mdc< td=""><td>3.18E+00</td><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	3.18E+00	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Na	2.97E+05	4.05E+05	3.72E+05	3.73E+05	2.09E+06	2.17E+06
Nd	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Ni	1.28E+01	1.43E+01	1.36E+01	1.41E+01	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Р	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pb	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Pr	3.51E-01	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sb	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Sc	1.36E+00	1.34E+00	1.28E+00	1.67E+00	2.10E+00	2.18E+00
Se	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
Si	5.33E+03	5.71E+03	6.60E+03	6.79E+03	5.98E+03	6.40E+03
Sr	3.78E+03	4.14E+03	4.65E+03	4.08E+03	1.36E+04	1.33E+04
Th	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
TI	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>
U	2.92E+00	3.26E+00	3.22E+00	3.18E+00	9.39E+00	9.61E+00
V	6.17E+00	5.78E+00	6.10E+00	6.24E+00	9.95E+00	1.26E+01
Zn	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""><td><mdc< td=""></mdc<></td></mdc<></td></mdc<>	<mdc< td=""><td><mdc< td=""></mdc<></td></mdc<>	<mdc< td=""></mdc<>

Internal Dosimetry Group

No existing contract radiobioassay measurements were scheduled to be performed during October mainly due to software technical issues in generating only the personnel radiobioassay reports, due to conflict between the Lynx and PC operating systems. There was no WIPP contract to be scheduled. During October and November, performed for 2025-2026 annual calibration cycle: 1) annual energy calibration of lung and Whole-Body detectors, 2) annual efficiency calibration BOMAB phantom counts of Whole-Body detector system in 4D and 3D configurations, 3) annual efficiency calibration phantom counts of Lung detector system for chest wall thicknesses 1.6 cm, 2.2 cm, 3.01 cm, 3.3 cm, (4.6 cm to be completed) using phantom lung sets and 5) completed performing DOELAP performance testing of unknown BOMAB phantom radiobioassay measurements for Whole-Body detectors in 3D configuration.

Outreach activities:

The Internal Dosimetry group continues to interact with the public to encourage citizens to participate in the Lie Down and Be Counted (LDBC) project's lung and whole body in-vivo radiobioassay measurements at CEMRC. CEMRC also promotes awareness of environmental monitoring and research to the public.

The following activities took place during the reporting period of October 1st to December 31st, 2024:

10/21/2024:

Carlsbad Collaborative Corporation visit

Explained the history and importance of WIPP development, the Lung and Whole-Body radiobioassay need and importance in the context of WIPP as a radioactive waste repository. Lecture presentation and Lung and Whole-Body radiobioassay facility tour. Handed out the flyers about Lie down and Be Counted program.

Attendees: 5 students, 1 visitor, 1 instructor. Location: CEMRC. Duration: 10:00 AM – 12:00 PM.

10/29/2024

Southeast New Mexico College (SENMC) students Field Trip to CEMRC

The purpose of the visit was to provide students with the concepts of radioactive decay by alpha, beta and gamma radiation emission, how these types of radiation can be monitored and measured experimentally, and concepts of instrumentation. Brief explanations were provided by CEMRC scientists about instrumentation for radiochemistry, environmental chemistry, and internal dosimetry monitoring and sample collecting methods. Gave a Lung and Whole-Body radiobioassay facility tour. Handed out the flyers about Lie Down and Be Counted program. Attendees: 7 students, 1 instructor. Location: CEMRC. Duration: 8:30 AM to 9:30 AM

Low Background Radiation Experiment (LBRE)

One of the current LBRE project goals is to identify Permian-age biosignatures in WIPP halite inclusion fluid. We have developed procedures to disinfect halite crystals (Owen, MS Thesis, 2023) and extract PCR-amplifiable DNA from the "Generic Weep Brine" that is used by Swanson (LANL-CO) to represent WIPP halite brine (CEMRC 2023 annular report). We report here recent progress made in developing our clean room and the microscopy methods we intend to use to identify biomarkers.

We completed our move of our Ancient DNA Laboratory to a clean room in which we have constructed and installed a 2-compartment glove box. There are two compartments in the glove box, the first a staging area where reagents and supplies are introduced, and the second compartment housing the drill, magnifying cameras, and lights (Figure 1A). During drilling, two camera angles can be projected onto the screen at once to allow for precision drilling and sampling of halite fluid (Figure 1B). Inclusion samples are tested for cell growth, DNA and Energy-Dispersive X-ray Spectroscopy (EDS) to complement Transmission Electron Microscopy (TEM) data.

A. Two Stage Glove Box in Clean Room

Figure 1. A. HEPA-filtered glove box in new cleanroom location in NMSU Biology department. **B.** Using two magnifying cameras, Emma Soto drills into WIPP halite in pilot study.

Following the WIPP halite disinfection procedure developed by a former graduate student funded by the LBRE project, we are finalizing the inclusion fluid extraction method under sterile conditions. Two tests have been run on extracted WIPP inclusion fluid, 1. Culture microbes 2. PCR-amplification of nucleic acids (CEMRC 2023 Annual Report). We are in the process of adding Energy-dispersive X-ray Spectroscopy (EDS) analysis to aid in distinguishing biotic signatures from the abiotic background in WIPP inclusion fluid. A test of the EDS system at NMSU is shown below in Figure 2.

B. Drilling Halite with Aid of Two Cameras

Figure 2. WIPP halite inclusion cavity with pigmented material (**A**), was analyzed by Energydispersive X-ray Spectroscopy (EDS) at the NMSU Imaging Center (**B**).

2.0

3.0 3.5

keV